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List of Abbreviations 
 

E  Electric field 

B  Magnetic field 

atm  Atmospheric 

CB  Circuit Breaker 

TRV  Transient recovery voltage 

RRRV  Rate of rise of recovery voltage 

S  Unit of conductivity-Siemens 

dg/dt  Conductivity slope 

kK  1000 Kelvins 

AC  Alternating Current 

DC  Direct Current 

dv/dx  Voltage Gradient 

Uarc  Arc Voltage 

H  Unit of Inductance-Henry 

EPA  Post Arc Energy 

UV  Ultra Violet Radiations 

hpa  Unit of Pressure-Hectopascal 

J  Current density 
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  Chapter 1 

1 INTRODUCTION 

 

1.1 Background 

Most of the faults in power systems are temporary faults out of which 

arcing faults are most common. An electric arc which is nothing but an 

electric discharge happened when electric-field between two conductors 

exceeds the breakdown strength of the air or other medium in the space 

between electrodes, is considered a source of harmonics [19]. When a high 

power arc exists, the temperature near it is so high such that it is issue of 

danger for the personnel as well as for the equipment staying near to it. 

When CB opens, in order to isolate a fault no matter whether it is arcing 

fault or short circuit fault, an arc exist between CB electrodes. 

Immediately after the interruption, arc reignition can occur, thus causing 

failure of interruption. Therefore discontinuity of power supply is 

prolonged in this way. Therefore correct knowledge of microscopic 

processes that can initiate and extinguish an arc is of great importance for 

reliability and quality of power in power systems. An understanding of the 

interruption and re-ignition of an arc discharge has obvious significance 

for the design and development of a wide variety of industrial devices. 

 

1.2 Objective of the Research 
 

The objective of this master thesis was to look closely on the behavior of 

electric arc in open air, such that to have better understanding that when 

interruption of AC electric arc can occur and what are the major factors 

that hinders the recovery of air space between the electrodes after the 
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interruption. Electric arc conductivity decay near current zero is an 

important parameter in deciding arc interruption and reignition, as AC 

current interruption is generally achieved at current zero. Therefore arc 

conductivity decay near current zero was our first area to investigate; as 

more arc conductivity mean less probability of interruption. The second 

area of investigation of this master thesis research was to find out how the 

temperature effects the breakdown voltage of air space in the gap, such 

that we have better understanding of the breakdown voltage dependence of 

air on temperature. 

 

1.3 Outline of the Thesis 

This research work consists of six chapters as follows: 

Chapter 2, gives an overview of the arc, its properties and related factors 

needed to understand the further discussion in following chapters. It gives 

the detail knowledge of phases of arcs. 

Chapter 3, explains what are the factors that affect the recovery of 

breakdown strength after the interruption. 

Chapter 4, describes the recovery dependence of gap space on 

temperature. It describes the arc parameters. 

Chapter 5, describes the experimental methods used, their results together 

with the discussion as well as the comparison of the results that we 

obtained from the experiments, with research work of others. 

Chapter 6, describes conclusion of this research work and future work, 

after which appendix showing MATLAB codes as well as measured 

readings, has been attached. 
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       Chapter 2 

2 OVERVIEW OF ELECTRIC ARC AND RELATED 

FACTORS 

 

2.1 Different types of electrode 

2.1.1 Refractory electrodes  

A refractory electrodes, are also called hot electrodes has ability to sustain 

a strong thermionic emission which is emission of electrons when material 

is heated, without strong melting or vaporization (e.g. Tungsten). Hot 

cathode discharge is discharge in which thermionic emission is the main. 

2.1.2 Non-Refractory electrodes  

Non-refractory electrodes, are also called cold cathodes and there is very 

little thermionic emission in cold electrode when heated. When they are 

heated to a temperature to cause thermionic ionization, they start to 

evaporate (e.g. Copper, Silver). Cold cathode discharge is a discharge 

which is aided by secondary ionization.  

 

Thermionic emission in cold cathode is not zero but is finite. This is 

shown in Figure 1 below. 
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 Fig 1: Ratio of flux of vaporized atoms to flux of thermionic electrons [1] 

 

From Fig. 1 we can notice that as the temperature increases, ratio of vaporized 

atom to thermionic electrons of cold electrode decreases, while it increases for 

hot electrodes. 

Non refractory electrodes show a very rapid (in micro seconds) dielectric 

recovery at current zero, but only to a level of a few hundred volts [p. 23-

24, 8]. The recovery of electric strength is due to the relatively cold 

surface of the electrode, cooling a very thin layer of plasma adjacent to it 

from, temperature of many thousands of degree [8], where the plasma is a 

good conductor, to a few thousands degree only where it forms an 

insulating layer. Arc chute circuit breaker that uses metal arc splitter plates 

operates wholly on this concept. 

 

2.2 Arc phenomenon in circuit breaker 

In High Voltage circuit breakers the current interruption takes place near 

current zero as due to following reasons:  

1. The voltage across arc and arc current are in phase, hence, arc is pure 

resistive. Near current zero, voltage is also minimum hence the arc 

energy is minimal and hence current conduction decreases. 
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2. Ions/electrons available for conduction in the medium are also 

minimum at that instant, as during current zero, temperature in the gap 

has also decreased due to losses, greater than energy input.  

When a high current fault occurs and circuit breaker is tripped in order to 

interrupt it, breaker contacts move apart and the contact area decreases 

rapidly until finally the contacts are physically separated. When the 

contact area decreases to a very small spot, the contact resistance increases 

considerably while the flowing current becomes highly concentrated 

which consists of a core of extremely hot gas with a temperature of 5,000 

to 20,000 K [p.16, 2]. Radial temperature distribution of an 80A arc is 

shown in different gases, in Fig. 2.                                                                                                                                                                                                                      

                                      

               Figure 2: Temperature distribution of 80 A arcs [3] 

This column of gas is fully ionized (plasma) and has a large electrical 

conductivity. When the current approaches zero, the arc diameter will 

decrease with the cross section approximately proportional to the current.  

In the vicinity of zero passage of current, the gas is cooled down to around 

2,000 K and if this temperature is less than ionization temperature of the 

medium between the gap, ionization will ceases. [2, p.16] 
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However ideally speaking an “ideal” AC circuit breaker would be able to 

open its contacts precisely at current zero crossing and there is no arcing. 

But in real situation, two reasons explaining the existences of electrical arc 

are following: 

1. It is practically impossible to separate the contacts exactly at the 

natural zero current point due to the uncertainty in the measurement-

order.  

2. The reason why we are not able to have high insulation at current zero, 

is due to we have limited mechanical energy which opens the contact. 

This limited energy causes the existence of the arc. For instance, if the 

contacts start to open exactly at zero crossing, they require finite time 

(in few milliseconds) to fully open and during this time (start of 

opening and fully opening) an arc exists between the contacts. So 

instead opening of contacts exactly at current zero which can rather 

cause an arc to exists for next 10 ms, the best way is CB opens before 

current zero and as current approaches zero, gap conductance 

decreases and there is more probability for the arc to extinguish at first 

zero crossing. 

3.  

                 

               Figure 3: Demonstration of Ideal circuit breaker [p.6, 4] 
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The electrical arcing breaking process in CB takes place in three phases 

[p.7, 4] : 

1. arc propagation phase, 

2. the arc extinction phase, 

3. the post arcing phase 

1. Arc propagation phase  

As generally the CB contacts, separate before current zero, however 

feeding of energy causes current continue to flow and hence this causes an 

arc to exist which is made up of a plasma column composed of ions and 

electrons (see Fig. 4). This column remains conductive as long as its 

temperature is maintained at a sufficiently high level. The arc is thereby 

“sustained” by the energy that it dissipates by the Joule effect. There is 

voltage drop near the electrodes called cathodic and anodic voltage and 

voltage drop in arc column. The sum of all these voltage drops is called 

the arcing voltage. Its value, which depends on the nature of the arc, is 

influenced by the intensity of the current and by the heat exchange with 

the medium (walls, materials, etc.).  

                                                                        

                Figure 4: Electrical arcing in gaseous medium [p. 6, 4] 
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 2. Arc extinction phase 

The extinction process is accomplished in the following manner: near zero 

current, resistance to the arc increases according to a curve which mainly 

depends on the de-ionization time constant in the inter-contact medium 

(means how fast the deionization of the space takes place as the current 

approaches zero) (see fig. 5 ). 

                   

 

                       Figure 5: Change in arc resistance [p. 18, 2] 

At zero current, this resistance has a value which is not infinite and 

therefore space has conductance (space is ionized, however no net 

movement of particles) but as the voltage across the gap start to appear 

electrons and ions are accelerated to the opposite polarities and hence this 

causes a post-arcing current across the terminals. 

3. Post-arcing phase 

This post arcing current can cause thermal reignition if its rate of rise is 

high enough after current zero (which is case for refractory electrodes) so 

that the voltage (which start to appear across the gap) and this post arc 
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current, provide that much power which is greater than the power loss due 

to recombination as well as due to diffusion. However if after a while this 

post arc current ceases due to recombination or due to diffusion there is 

another period after which the rate of rise of voltage causes electric 

breakdown of the gap. 

 

2.3 Regions in the arc 

Arc is composed of three principle regions: the cathode region, the anode 

region and the arc column, no matter what the total arc length is. Through 

all these regions current is carried by electrons and ions. In a steady arc, a 

balance is made between power input and losses. Arc become unstable 

when there is disturbance in this balance [p. 186, 5]. 

2.3.1 Arc column  

The arc column is a region in which ionized gas gives almost exact 

equalities of positive and negative charge densities, and are comparable to 

that of neutral gas molecules so that very low axial electric field exist in 

that region [5]. Heat produced by the I
2
R losses in the arc column 

maintains the ionization and flows axially towards the electrodes and 

radially outwards from the arc. The ionization in the arc column is 

maintained by the energy dissipated in the arc. A steady arc adjusts its 

temperature and diameter such that power loss from arc is minimum. The 

extreme temperature and high conductivities are confined to the core of 

the arc column. Both these quantities decreases sharply at some radius 

beyond which there is no current conduction to speak of. 

2.3.2 Cathode region 

Cathode region is a region adjacent to the cathode. In the arc the current is 

carried partly by positive ions drifting slowly to the cathode from the 

plasma of arc column. In the space between the surface of the cathode spot 
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(a very small point like object where from electrons leaves from surface of 

the cathode) and the cloud of positive ions there is a high electric field. 

This region is called cathode region. Therefore a significant cathode 

voltage drops builds up over the cathode region. The width of the region 

depends on the arc current, the medium in which it is burning and the 

cathode material.  

2.3.3 Anode region 

As like cathode region, anode region is a region adjacent to the anode, 

where due to cloud of electrons there exists an electric field, hence the 

voltage drop. For long arc gaps (gap distance more than fraction of inch), 

all the voltage appear across arc column (shown in Figure 9) however 

voltage gradient dv/dr near the anode and cathode is higher than in the 

column. The voltage distribution for long arc gap is shown in Figure 6 

below: 

                                                 

                                     Figure 6: Axial voltage distribution of an long arc [p. 1132,6] 

 

As we know that near anode and cathode there is quite high voltage 

gradient. This voltage gradient causes the charge particles to accelerate 

with a high speed, therefore due to this high acceleration the jet is quite 

straight and due to low voltage gradient in arc column the charge 
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travelling path is not that straight but rather diffuse. The energy of the unit 

length of the arc jet is larger than that of the arc column. [p. 793, 7] 

 

                    

                                     Figure 7: Long arc with electrode separation distance of 3.4m [p. 792, 7] 

 

The Figure 7 shows that, the arc jet (which is caused by pressure gradient) 

is quite straight near at both anode and cathode however the arc column   

just follows diffuse path or meanders. 

 

It has been found out [36] that the cathode or anode voltage drop is 

affected by the electrode material however this anodic or cathodic voltage 

drop of the SF6, Argon and Air arcs, is independent of the current in the 

range of 10 to 20 000 A. 

 

It should also be noted that the recovery and reignition of the electrode 

regions and arc column proceed simultaneously and interactively, the 

physical processes within these separate regions and within the transition 

zones between the regions being different.  
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The small temperature difference between electrode and plasma causes 

relatively weak cooling of the post-arc channel at the cathode [22]. This 

means that larger the temperature difference between electrode and 

plasma, larger will be the cooling of post-arc channel at cathode. 

 

2.4 Ionization and Recombination 

2.4.1 Thermal ionization 

Thermal ionization occurs when a mass of gas is heated to such content 

that is sufficient for the random thermal velocities of the particles to cause 

ionization. The degree of ionization depends on pressure, the temperature 

and the ionization potential of the gas.  

 

2.4.2 Ionization by collision 

Ionization by collision is the ionization occurring in a gas by electrons that 

are directly accelerated by high electric gradients in the arc. 

 

2.4.3 Recombination 

When positively and negatively charged particles exist in a gas, there is a 

rate of recombination means pairs of oppositely charged particles 

recombine to form neutral particles. The recombination occurs more 

rapidly at low temperatures, where particles have lower velocities, than at 

high temperature because for recombination to occur the particles must 

remain close enough to one another for a sufficient time for recombination 

to occur [p.29, 8]. 
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In circuit breaker arcs, two major ionization processes are of interest. 

During the conduction period, ionization is almost wholly thermal 

ionization means temperature of the gas is that much high that causes the 

detachment of electrons from the neutral particles. During very near 

current zero period, ionization by field emission can occur [p. 26, 8]. 

 

2.5 Breakdown regimes after arc current interruption  

2.5.1 Thermal regime 

 

The thermal regime occurs if rate of decrease of the current to be 

interrupted (di/dt, before current zero) and the initial rate of rise of the 

transient recovery voltage (dv/dt, immediately after current zero), provide 

enough power so that reignition occurs. 

At current zero, electrical conductivity of the space in the gap is not zero, 

because, ions and electrons takes some time to disappear as a process of 

recombination or other power losses effect. With the rising recovery 

voltage, these ions and electrons accelerates to opposite electrodes hence it 

gives rise to what is called a "post-arc current, with amplitude up to a few 

Amperes. Whether or not interruption is going to be successful is 

determined by a race between the cooling effect of the space between gap 

and the energy input in the arc path by the transient recovery voltage and 

post arc current. When the scales of the energy balance tip in favor of the 

energy input the circuit breaker will fail thermally [p. 17, 2]. 

The thermal interruption regime for SF6 circuit breakers corresponds to 

the period of time starting some µs before current zero, until extinguishing 

of the post arc current, a few µs after current zero. [ p. 17, 2] 
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2.5.2 Dielectric or spark breakdown regime 

When the circuit breaker has successfully passed the thermal regime 

(means a few microseconds after post arc current), the transient recovery 

voltage (TRV) between the contacts rises rapidly (this transient rise 

depend on the circuit parameters across both ends) and will reach a high 

value. For example, in a single unit 245 KV circuit breaker, the contact 

gap may be stressed by 400 KV or more, 70 to 200 µs after the current 

zero [p. 18, 2]. 

In the dielectric regime the space between the gap, is no longer electrically 

conducting, but it still has a much higher temperature than the ambient. 

This reduces the voltage withstand capacity of the contact gap. The stress 

on the circuit breaker depends on the rate of rise and the amplitude of the 

TRV. 

The withstand capability of the contact gap must always be higher than the 

transient recovery voltage otherwise a dielectric re-ignition will occur 

(dielectric failure). This requires an extremely high dielectric withstand 

capability of the gas, which is still rather hot and therefore has low 

density. 

It has long been known that interrupted arcs between non-refractory 

electrodes (e.g., Cu, Ag) can be reignited only by the reapplication of a 

voltage in excess of the minimum spark breakdown value and that most of 

this appears across the cathode region of the discharge.  

Refractory electrode regions however can have significant electrical 

conductance for appreciable times after interruption, so that, for example, 

continuity of current flow may be maintained through an AC current zero 

without the appearance of high-voltage transients. [23]  



20 
 

For the successful interruption two physical requirements (regimes) are 

involved: 

 Thermal regime: The hot arc channel has to be cooled down to a 

temperature low enough that it ceases to be electrically conducting.  

 Dielectric regime: After the arc extinction, the insulating medium 

between the contacts must withstand the rapidly increasing recovery 

voltage. This recovery voltage has a transient component (transient 

recovery voltage, TRV) caused by the system when current is interrupted.  

If either of these two requirements is not met, the current will continue to 

flow for another half cycle, until the next current zero is reached.  

Different techniques are used to extinguish the arc including: 

 Division into partial arcs: As we know more the contact area of the 

electrode used more it has effect in cooling the arc next to it.  

 Connecting capacitors in parallel with contacts: By doing this we decrease 

RRRV and hence energy input to the arc is less. 

 Lengthening of the arc: By this we increase resistance to the arc current 

and area of cross section of arc decreases. 

 Intensive cooling: By this we increase rate of recombination of ions and 

electrons, as by cooling the K.E of ions and electrons decreases which 

results in high rate of recombination. 

 

2.6 Arc sectional area 
 

Experiments show that the sectional area and the density of ions in the arc 

stream increases with current [p.422, 9].In ac arcs, arc section is not that 

which corresponds to the current flowing at the moment, but depends on 

the current which has been flowing previously. If the current previously 
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has been larger, then the section will be larger than that corresponding to 

the momentary current [p.425, 9]. The reason for this, is that the ions of 

heavy weight will not have time to disappear instantaneously.  

2.7 Interruption in DC and AC current 

For direct current interruption, if there is direct current arc then resistance 

of the arc must be increased rapidly enough to force the current down to 

zero in a reasonably short time but not so rapidly that high over voltages 

are generated in the inductance of the circuit.[ p.20, 8] 

For ac arcs, there are two current zero every cycle, hence due to its nature, 

the current is decreasing naturally and resistance start to increase as 

current approaches zero due to natural deionization but more deionization 

can be achieved artificially which help the interruption. 

If the arc current is very low, and arc becomes unstable (this instability is 

due to increase in losses of the arc than the input energy), as current 

approaches to zero, then due to this instability current can suddenly go to 

zero before its natural current zero. This is called current chopping. More 

little chopping of current near current zero, less over voltages are 

generated in the inductance of the circuit and hence across the gap which 

can be seen in Fig.8.  
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Fig.8. (a) Arc voltage and (b) post-arc current after a smooth current decline 

          (dashed lines) and after a current chop (solid line). In both          

          measurements, a peak-arc current of 39 kA and an arcing time of 

          3.4ms were used. [p.1590, 10] 

 

2.8 Magnetic phenomena in arcs 

 

The axial current flow in an arc sets up a circumferential field as shown in 

Figure 12. 

                                                                      

          Figure 9: Self circumferential field set by arc current [p.326, 11] 

This circumferential field interacting with the axial current sets up a 

pressure acting radially inwards. 

If the cross section of arc changes along the length of the arc, current 

density changes and therefore pressure at the axis changes, and an axial 

pressure gradient exists. This situation occurs at the electrodes of arcs, 



23 
 

where current densities are commonly higher than in the arc column due to 

high dv/dr (as cathodic and region has high dv/dr, which casues the 

current to be rather straight that arc coloumn and J=I/A, is higher). A high 

pressure thus exists in front of the electrode and this high pressure can set 

up a jet of plasma moving away from the electrode at velocities up to 10
5
 

cm/s [p. 32, 8]. 

Consider an infinite cylindrical column of conducting fluid with an axial 

current density J and a resulting azimuthal magnetic induction B. The 

force acting on the plasma, forces the column to contract radially. This 

radial constriction of the plasma column is known as the pinch effect.  

As the plasma is compressed radially, the plasma numbers density and the 

temperature increases. The plasma kinetic pressure counteracts to hinder 

the constriction of the plasma column, whereas the magnetic force acts to 

confine the plasma. When these counteracting forces are balanced, a 

steady state condition results in which the plasma is mainly confined 

within a certain radius R, which remains constant in time. This situation is 

commonly referred to as the equilibrium pinch. When the self-magnetic 

pressure exceeds the plasma kinetic pressure, the column radius changes  

with time, resulting in a situation known as the dynamic pinch. [p. 325, 

11] 
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  Chapter 3 

3 ARC IN OPEN AIR 

 

3.1 Arc recovery 

3.1.1 Effect of uniform and non-uniform field 

Previous work has shown that faster dielectric recovery is obtained in 

uniform than in non-uniform field conditions [13]. This has been shown to 

be partly due to two effects each causing a lower breakdown voltage in the 

non-uniform field situation. One of these is that the process of photo 

detachment is more efficient in non-uniform field configuration in 

providing the space charge field enhancement required to promote 

breakdown at lower E values. The other is associated with the fact that E 

is higher at the electrodes(due to more dv/dx (cathode or anode voltage 

drop); at the electrode regions ) than at mid gap in the more non-uniform 

field case, so that electrons coming from cathode region will have higher 

energies than those corresponding to average electric field. This results in 

increased ionization efficiency at mid-gap and consequently lower 

breakdown voltage in the non-uniform field case which cause a longer 

recovery time to a given voltage level. 

 

3.1.2 Erosion rate 

The increase erosion rate of a material electrode at after crossing a certain 

current limit before which erosion is not that significant, causes the 

roughening of the electrode surface and a lower breakdown voltage as a 

result of increased field non-uniformity[13].  
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3.1.3 Electrode material 

The dielectric recovery after the arc extinction is influenced by the 

material of the electrode as well as the shape of the electrodes. The 

experiments[12] shows that recovery is faster with Ag-CdO contacts than 

with any other material tested, with flat contacts than with those having 

high point at the contact center, with cone shaped rather than butt contacts. 

 

                                      

                Figure 10: Geometry of cone and butt shaped contacts [12] 

 

                      

 

Figure 11: Recovery characteristics for 2.4 cm diameter Ag-CdO contacts in 

                  air at atm pressure following 1000A arc, where upper diagram  

                  shows the  effect of contact shape on recovery and lower diagram  

                  shows the effect of contact surface angle on recovery [12] 
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We can see from the above figure that after 1000A arc interruption, the 

voltage across the gap builds slowly (time of arc extinction to the extent to 

which voltage has recovered is called recovery time). This is due to the 

fact that the conductance of the gap after current zero takes finite time to 

be zero. Hence conductivity time constant is an important parameter to 

describe the recovery of the gap space.  

The following diagram is for cone shaped contacts with   ϴ =2
o  

showing 

effect of different materials on recovery time. 

 

                        

Figure 12: Recovery characteristics for 2.4 cm diameter contacts in air at 

                   atm pressure for different contact materials (a) Ag-CdO;   

                   (b) Ag-W;  (c) Cu;  (d) Ag [12] 

 

3.1.4 Prior arcing 

Fluctuations in recovery time to a given recovery voltage, depend on 

interval of applied voltage. Fluctuations with the smaller (2 mm) gap are 

primarily the result of electrode effects, whereas those with the larger (1 

cm) gap are primarily related to effects in the gas [p.286, 12].  
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3.1.5 Electrode effects 

 

With no prior discharges between the contacts, the gap required a large 

voltage, to breakdown the gap space. If applied at an interval again and 

again, the breakdown voltage gets lower than for first breakdown voltage.  

 

The reason for this is when there is not prior arcing has occurred; the 

presence of an absorbed cathode layer has reduced the secondary 

ionization coefficient gamma of the gas and hence has increased the 

breakdown voltage [12]. Immediately after arcing, which tends to remove 

the oxide layer, a transient gamma increase can cause a reduction in 

breakdown voltage. Even when the oxide layer reforms after arcing, 

residual positive charges resting on the oxide layer or on dust particles 

deposited on the surface can cause an effective reduction in surface work 

function, with consequent gamma increase and breakdown voltage 

decrease.  

 

 

3.1.6 Gas Effects 

In addition to the electrode effects, however, gas effects can cause 

variations in breakdown voltage. It is known, for example, that electrical 

discharges in air result in the formation of various impurity products due 

to chemical activity in the cooling gas following the dissociation of 02 and 

N2; in particular, NO2, NO, N20, and 03 are formed [12], and the latter two 

have very high electron attachment cross-sections at electron energies 

occurring at breakdown in air at atmospheric pressure. These products can 

cause a factor of 10 increase in the average electron-attachment 

coefficient, [15] resulting in an impulse breakdown voltage increase of up 

to 40%. It has been found that the increase in impurity concentration, and 
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the resultant increase in breakdown voltage are greater following higher 

energy input to the gap, [16] means flowing higher arcing current. 

 

The faster recovery observed with flat contacts compared with those 

having high contact surface angles is due to more uniform field 

configuration. [12] 

 

Gas density reduction, due to preceding arcing, result in lower breakdown 

voltage. Increased secondary ionization coefficient gamma due to 

deposition of charge onto the contact surface result in lower breakdown 

voltage. [12] 

 

3.1.7 Deion circuit breaker 

 

It is evident that it is the slow rate of recombination of the ions in the arc 

space away from the electrodes which limits the applicability of the arc in 

air for interrupting high voltages. A fairly obvious suggestion would be to 

reduce as far as possible the arc space remote from a cathode and so far as 

possible causes all the arc to play in space close to a cathode, in other 

words to use a large number of short arcs in series. This is what is done in 

the Deion circuit breakers. 

 

3.2 Circuit  parameters  and  device  to  limit  reignition 

 

3.2.1 Circuit parameters 

 

The arrangement of circuit parameters such as inductor and capacitor does 

effect the rate of rise of recover voltage and hence in turn affect the 

reignition phenomenon.  
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It has been concluded by [23], that the more the capacitance across the 

CB, the less the rate of rise of recovery voltage as shown in Fig. 13, and 

smaller the series inductance,  smaller the rate of rise of recovery voltage 

as shown in Fig. 14.    

                 

Figure 13: Measurement a.) with 10nF capacitor b.) with 1nF capacitor 

                   across CB [22]      

   

Figure 14: Measurement with series inductor  a.) of 105 µH  b.) of 225 µH 

                   [22] 

 

 

3.2.2 Zinc Oxide device 

 

Due to the high financial outlay costs involved, the power utilities have 

sought an alternative to reduce TRV peak. Zinc Oxide (ZnO) devices are 

being applied as an alternative to limit TRV peaks in circuit breakers and 

reclosers of 15 kV and 72.5 kV voltage class. 
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Figure 15: Schematic of circuit with ZnO device in parallel with the 
                   Breaker [24] 

 

Taking into account Fig. 15, Capacitor Cs take care the magnitude and 

frequency of TRV. Rs  adjust the attenuation level while Cd is related to 

the initial rate of rise of TRV.  

 

3.3 Difference between Short Arcs and Long Arcs 

3.3.1 Short arcs 

Short arcs are the arcs which happen in a gap of distance fraction of an 

inch [p. 422, 9] preferably less than 10mm electrode gap. As we know the 

space next to cathode, deionized very quickly and have the capability to 

withstand few hundred of volts immediately after arc extinction. The 

space next to cathode layer deionizes rather slowly [p. 422, 9]. Hence after 

few hundred volts the recovery which is done by the space next to layer is 

rather slow. As deionization by the space next to cathode happens, the 

cathode layer becomes widened. 

Hence a arc is short if it extinguish in a circuit which impresses less than a 

few hundred volts upon it, then use is made of recovered dielectric 

strength of cathode layer, and the arc is to be regarded as short. If 

however, the arc extinguish in a circuit which impresses more than a few 

hundred volts upon it, then use is made of recovered dielectric strength 

away from the cathode layer, and the arc is to be regarded as long. 
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Hence long arc is one in which during the extinction period the larger part 

of the recovered dielectric strength resides in the space away from the 

cathode layer. 

 

3.3.2 Long arcs 

From the electrical properties of an arc under steady conditions (volt-

ampere characteristics) point of view, it has been found that for long gap 

arcs, arc voltage is directly proportion to the length of the arc. 

                                                  Uarc = BL 

Where B is voltage gradient of the arc column and L is length of the arc. 

This voltage gradient is almost independent of arc current so the long high 

current arc voltage is determined by arc length. From range of currents of 

100 A to 20 kA, the average arc voltage gradients lie between 1.2 and 1.5 

kV/m [p. 1141, 17]. It should be noted that the whole voltage drop come 

across arc column for long arcs. 

After the initiation of the arc, with very high current flowing, there is no 

time taken by it to breakdown the gap again as due to high currents the 

temperature of the plasma is so high that it requires no breakdown voltage. 

Hence this seems like the situation as if there is pure resistor in the circuit 

however this resistor seems non ideal as one sees in the Fig.16, it more or 

less shows a hysteresis loop, in the arc voltage and current diagram. 

Moreover one can see that the arc voltage is high with the same current 

when current is increasing than with when current is decreasing. This is 

because the temperature of the arc becomes higher by the accumulated 

energy of the arc, which increases the conductivity of the arc. Therefore 

the arc resistance becomes smaller. 
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Arc voltage characteristics for long arcs with high current are shown in 

Fig. 16.  

             

           Figure 16: Arc voltage and current characteristics [p. 793, 7] 

The long gap arc increases their length by the passage of the time. The 

elongation of the arc is determined by the magnetic forces produced by the 

supply current, the convection of the plasma and the surrounding air, the 

atmospheric effects. [17] 

As due to its natural nonlinear behavior the arc is assumed as the source of 

harmonics which will distort the waveforms of the parameters in the 

component. Hence this parameter can be used as a good indicator which 

can distinguish the metallic faults with the arcing faults [19]. 

           

Figure 17: Arc voltage amplitude spectrum showing different harmonics[19]                 
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Figure 17 shows the arc voltage amplitude. From the amplitude spectrum 

it can be observed that arc voltage total harmonic distortion is 41.1%. 

                     

Figure 18: Reignition voltage/ time characteristics in air for various gap 

                   lengths [20] 

 

From Fig. 18 we can notice that the small gap recover faster than that of 

the larger one. This is because of greater effect of electrode surface on 

cooling and deionizing the residual column [20]. So from this we can 

conclude that as both 1mm gap and 1cm gap, both have cathode layer 

which recover few hundreds of volts in equal time, the effect of electrode 

surface on cooling and deionizing the residual column is important (as for 

1mm gap the electrode are near hence their contribution in cooling is 

greater). Hence shorter gaps recover faster than longer gaps [29]. 

The extinction of long ac arcs in the open is greatly influenced by the 

sectional area which the arc stream has at current zero. By confining arcs 

to slots and holes, the rate of deionization at current zero is greatly 

increased and therefore a large voltage/ cm of arc can be interrupted. [9] 
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Compton has shown that for the electric gradients which exist in the arc 

stream at atm pressure ionization by collision is entirely inadequate to 

supply the ions which are being lost. Also it has been found that ionization 

by collision is also negligible at the gradient which is impressed upon the 

arc space after arc extinction. Compton suggests that the high temperature 

in the arc stream is responsible for the ionization. [9] 

 

In the following Fig.19, we can see few gases showing the density of 

ionization which is maintained entirely as a consequence of high 

temperature. 

 

In Fig. 19 below is ionization dependence of different gases on 

temperature given by Saha's equation. We can see from these curves that 

appreciable ionization does not start until a specific ionization temperature 

of each gas. With further increase of temperature ionization increases very 

rapidly. 

 

                                         

                           Figure 19: Thermal ionization of the gases [9] 
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3.4 Electric field of non-refractory cathode after current 

zero 

 

                 

            Fig. 20: Distribution of electric field along cathode layer [22] 

 

We can see from Fig.20 that immediately after current zero the electric 

field in the cathode sheath grows very slowly.  
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3.5 Power losses from arc 

                 

                      

Fig. 21 : Variation of power loss after arc interruption. (a) Arc current:  10A 

              (b) Arc current:  20A. PT= Total arc loss; PP= Positive coloumn loss.  

              Carbon electrodes, 4mm diameter; gap separation 5mm 

                

From Figure 21, we can see that higher the current interrupted higher the 

power losses near the interruption. 

 

With refractory electrodes (carbon, tungsten, molybdenum) the hot 

electrode mass cools only slowly and a net negative space charge will be 

maintained by thermionic emission. Thus, for refractory arcs, reignition at 

the electrode is easily achieved at low voltages. For cold-cathode arcs (e.g. 

copper and mercury), the space charges are removed and the electrode 

regions can be reformed only by the application of at least the minimum 

sparking voltage, so that almost immediately after arc interruption (less 
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than 1 µs) voltage recovery to about 300 volts occurs. Clearly, in the latter 

case, the process of thermal reignition in the gas will be masked, except 

for very short times after current zero, by the spark breakdown required in 

the electrode regions. [14] 

 

3.6 Post arc energy 
 

Post arc energy is an important parameter in deciding whether reignition 

will occur or not. If the post arc energy is less than power losses arc will 

extinguish and if post arc energy is greater than power losses arc will 

reignite. 

In Fig. 22, a successful interruption is shown with its respective post arc 

current and post arc voltage. The calculated traces of post arc Power and 

post arc Energy are shown as well. 

 

                  

 Figure 22: Post arc voltage and current and calculated quantities [26] 

 

 

It has been shown [26], that effect of di/dt (rate of change of current 

before current zero) on post arc energy is more than that of dv/dt (rate of 

change of voltage after current zero); which can be seen in Fig. 23 and 

equation (1),but dv/dt cannot be neglected. 
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 Figure 23: Variation dependence of post arc energy on di/dt and dv/dt [26] 

 

               
    

       
       and  

    

       
      (1) 

 

From this calculation we can see the relative influence of di/dt is about 

two times the relative influence of dv/dt. So this suggests that the 

reignition is more probable with high current slope before current zero 

than with low current slope before current zero. However as mentioned the 

effect of dv/dt cannot be neglected. A low current slope before current 

zero, but with a large dv/dt after current zero can also easily result in 

reignition. 
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Chapter 4 

4 EFFECT OF TEMPERATURE AND ARC 

PARAMETERS  

 

4.1 Effect of temperature  

 

Figure 24, shows that the electric field intensity at the point of the cathode 

surface decreases with the swelling of electron emission, which can be 

explained by the reduction of net positive charge because of the increase 

in electrons. 

 

             

Figure 24: The relationship between the electric field intensity and the  

                   cathode temperature [25] 
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Figure 25: The relationship between potential and the cathode  

                   temperature [25] 
 

Figure 25, shows potential drop of cathode sheath reduces with the 

increase in cathode temperature, which is caused by the decrease in 

electric field strength due to increase in electron emission due to 

temperature. 

 

Figure 26, shows the length of the cathode sheath drops with the increase 

in cathode temperature. 

                     

Figure 26: Relationship length of the cathode sheath and cathode  

                   temperature [25] 
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For an confined air, as the air temperature increases the kinetic energy of 

the molecule increases and this exerts pressure on wall of the confine 

material. Hence, pressure of the air increases as the temperature increases, 

keeping the volume of the container constant. For an unconfined air 

(which is not confined in any closed material), as the  air temperature 

increases, the gas expands, hence volume of air increases, but pressure 

remains close to atmospheric pressure.  

 

It should be noted that while happening of arc, it sends pressure waves to 

the surrounding [40].This pressure wave is very strong when breakdown 

happens and lightning is a good example of it. However due to open air 

configuration, for small energy arcs, the pressure remains close to 

atmospheric pressure. 

 

Physical properties of the arc are greatly dependent on the temperature 

[29]. The dependence of various physical properties of air, on temperature 

is shown in Fig.27 below. 
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Fig. 27 : Physical properties of air as a function of temperature, all at atm  

               pressure. K= Cofficient of  thermal conduction, mass density, CP=  

               specific heat per unit mass,  =kinectic viscosity  [29] 

 

After arc extinction, breakdown voltage of air gaps, becomes a function of 

gas temperature of the gap [29][31], [32], [33] and recovery characteristics 

are governed almost entirely by the rate of decrease in the gas 

temperature, except for, in the very early stage of recovery. The voltage 

recovery characteristic of air gaps, i.e the temperature decay characteristic 

of arced gas, is dominated by the geometrical factors of the air gaps 

[30],[31],[33] and the physical properties of air[31],[32],[34][29]. 

 

The temperature of arced gas decays from several thousand kelvins at an 

early stage of recovery [31], [32] to 300K at full recovery, and the 

physical properties of air, change considerably with the gas temperature 

[29]. 

 

As was expected time constant of temperature decay is smaller for smaller 

gaps and larger for larger gaps [29] which strengthen the idea that 

electrode has important effect on cooling. It has also been found [29] 
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greater the temperature of the arc, smaller the time constant, means arc of 

very high temperature tend to cool faster than arc with lower temperature. 

It can be seen in Fig. 28. 

 

                               

 

Figure 28: Time constants of the temperature decay process as a function of 

                   gas temperature [29] 

 

 

The Fig. 29 shows the temperature decay of air gap, after extinction of 150 

A arc across spherical electrodes with gap distance 1mm, 3mm and 7mm; 

derived by [29] with the help of Paschen’s curve and voltage recovery 

characteristic of gap. 

                 

    Fig. 29: Temperature decay of air after extinction of electric arc of 150A 

                [29] 
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It should be noted that immediately after arc interruption, the space is fully 

ionised, and pashen law is not valid for ionised space [35], hence 

temperature decay chractertics were not found in early period after 

extinction of the arc. 

 

4.2 Arc parameters 
 

Two types of parameters can be readily used to gain insight in the 

processes around current zero that are very relevant in deciding arc 

interruption or reignition. [27] 

 

These are called: (1) Direct parameters (2) Indirect parameters. 

 

Direct parameters: These are the parameters that are directly available 

from arc current and arc voltage (for instance arc conductivity which is 

current/voltage). Use of these parameters gives insight into the margin of 

the breaker in interrupting the current, effectiveness of shunt capacitances 

etc. 

 

The experiments done at KEMA laboratory [27] demonstrate that arc 

conductivity before current zero is an important factor in deciding 

interruption or reignition. It has been found [27] that if the arc 

conductivity 200 ns before current zero falls below 3 mS, then there will 

be interruption otherwise there will be reignition. Hence arc conductivity 

which is a direct parameter is an important parameter to consider while 

taking insight in to interruption process. It has also found out that [27] the 

conductivity limit value after which interruption is less probable, does not 

depend on the rating of circuit breaker shown in Fig 30. 
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Fig. 30: Conuctivity value, 200 ns before current zero for circuit breakers of 

              different ratings. Circles  indicate observed failures, squares 

              indicated observed interruptions. Horizontal lines indicates   

              conductivity limiting value before 200 ns of current zero after which  

              reignition happens [27] 

 

Indirect parameters: Black-box models describe the wave traces of the 

arc current and voltage by a set of mathematical equations [28]. Indirect  

parameters are the parameters of a black box model of the arc. These 

parameters can be used in analyzing interruption behavior under 

conditions other than tested means which hasn’t been experimented yet 

but having performed one basic experiment and after fitting the result in 

some arc’s mathematical model, we will find the indirect parameters (for 

instance arc time constant, power losses etc.). These indirect parameters 

can be utilized to simulate the experiments which haven’t been performed. 

Hence these parameters are useful tool for behavior forecasting of electric 

arc. 

 

 

 



46 
 

4.3 Heat losses from arc 
 

The electrical power is dissipated in three regions of the arc: anode, 

cathode and plasma column. The area at cathode and anode has strong 

effect on the flow of heat energy to the terminal. Heat loss of arc is an 

important parameter in deciding how stable the arc is. Basically, heat 

losses are of three kind; Radiation loss, Convective loss and Conduction 

loss. Depending on the arc current, one out of these three losses is the 

dominating one. If the sum of all these losses from the arc exceeds the 

power input, arc becomes unstable and has more probability to extinct. 

When power losses are equal to input power, arc is just stable. When 

power input is more than power losses are becomes more stable. This 

stability increases with increase in the power input and decrease in the 

power losses. The explanation of these power losses is as follows: 

 

 

 

4.3.1 Convection loss 

 

As due to very high temperature of the arc which is basically caused by 

Ohmic losses, the density of air in between the gap becomes lower than 

the outward air. This causes a lift force to appear which makes the heated 

air of light weight to move upward. Therefore the outward air, moves 

downward and takes the position of lighter air and lighter air takes the 

position of heavier air. Therefore this release of heat to surrounding from 

the arc is called convection loss. 
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4.3.2 Radiation losses 

 

All electric arcs emit radiation, the amount and character of which 

depends on the atomic mass and chemical composition of gaseous 

medium, the temperature and the pressure. As energy input to an arc 

increases, higher states of ionization occur and higher level of radiation 

result. By emitting radiation, the energy of arc gets lower. 

 

Radiation from arc, is in the form of ultraviolet, visible and infrared light. 

Since the intensity of radiation is high, arcs pose hazards to operator and 

observers. UV radiation is particularly dangerous to the eyes but also can 

cause sunburn-like damage to exposed skin, while infrared radiation 

causes burning heat [37]. 

 

Radiation losses are dominant at high temperatures while the convection 

has a major role at low temperatures. [38] 

 

It has also been found [39] that, the electrode material has effects on 

radiation extent. When Aluminum has been used as electrodes, the 

radiation was 65% higher than that of Copper electrodes. Increase in arc 

current gives almost linear rise in radiation. Increase in the electrode 

separation, gave a rise in radiation that was slower than linear. 

 

At pressure close to 1 atm, radiation is not a significant factor in heat 

dissipation from the arc. At higher pressure, however the radiation may 

become a very important factor in energy dissipation. [41]  
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The arc radiation losses in atm air are 1%, but they become significant at 

pressure above 10 atm and for higher power arc. [42] 

 

From all these research results, we can thus conclude that radiation losses 

become an important factor when: 

1. energy input to the arc, hence arc temperature is very high 

2. pressure of the medium between the electrode gap before arcing is 

much larger than atmospheric pressure.  

3. electrode separation is large. 

 

As during peak of the sinusoidal cycle of AC arc, the temperature is very 

high hence during this period radiation plays an important role in heat 

transfer. 

  

4.3.3 Conduction losses 

 

Conduction is movement of heat through a material. Conduction occurs 

when rapidly moving or vibrating atoms and molecules interact with the 

neighboring particles, thus transferring some of their kinetic energy to 

them. In gases, conduction is due to the collisions and diffusion of the 

molecules during their random motion. Photons in general, do not collide, 

one another and hence heat transported by radiation is not regarded as 

conductive.  

 

Conduction has a dominant effect of heat transfer in solid. In gases the 

conduction is very little, the reason being the atoms in solid are more close 

to each other than gases, hence there are more collisions between atoms 

hence more transfer of heat, than in gases. However, the thermal 

conductivity of gases generally increases with increase in temperature. 
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4.4  Effect of thermal conductivity in cooling high 

temperature space 
 

           

    Fig 31: Thermal conductivity of Air, Argon and carbon dioxide [45]  

The variation of the thermal conductivity, depends rather strongly on the 

nature of the gas as can be seen from Fig. 31, the high peaks at low 

temperature are related to the phenomenon of molecular dissociation. [45]  

During the first instants of the extinction of electric arc, the variation of 

the axis temperature is mainly due to conduction and radiation losses 

because convection tends to cool down the external parts of the plasma but 

not the inner part.[45] 

The lowest temperature at which peak thermal conductivity of nitrogen 

occurs is at 7000K, that means after arc extinction [21], the decay of 

temperature until 7000K is very fast but after that it is very slow. In SF6, 

there are several peaks of thermal conductivity at around 2500K, which 

leads to rather strong cooling until 2500K.  
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Chapter 5 

5 EXPERIMENTAL RESULTS 

 

5.1  Indirect parameters 

 

It has been investigated [43] that the conductance of the arc at current zero 

is a good electrical parameter for determination of the ability of the 

circuit-breaker to interrupt the current. The reason for this, is that large 

power loss increases the chance for interruption. Large power loss is equal 

to small conductance. Because the resistance is the inverse of the 

conductance, the resistance at current zero is an equally good parameter. 

The behavior of space in the electrode gap, after arc extinction was 

originally represented by Cassie and Mayr. 

 

5.1.1 Cassie and Mayr Models 

 

Cassie and Mayr, working independently, formulated two differential 

equations based on rather different concepts of the physical nature of the 

arc colomn. 

Cassie assumed an arc column within which the temperature is fixed and 

uniform in space and time, having resistivity, power loss and energy 

content being constant. The cross sectional area varies with current and 

time. 

Mayr assumed a cylindrical arc column of constant cross-sectional area 

within which the temperature varies with the arc’s radial dimension and 

with time. 
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It has been observed that the Cassie model, with its steady state arc 

voltage, fits best the voltage and current waveforms for the arc during the 

period prior to current zero, whereas the Mayr model, describes best the 

characteristics of a low current arc. Mayr’s equation becomes a better 

approximation only when the arc temperature falls to a level just above that at 

which electrical conductance due to thermal ionization practically disappears and 

the energy is transferred mainly by radial heat conduction.[46] 

 

In this master thesis, for first experiment of measuring arc parameters,  

low current AC arc of 10A amplitude has been  tested, in open air. The 

main purpose was to find how the conductivity falls near current zero 

period. As we were more concerned with conductivity decay near current 

zero and the arc was of low current, therefore Mayr model has been used 

as it is suitable to find conductivity decay for low current arcs. The Mayr 

model is as follows: 

 

For low current electric arcs, the arc conductance is assumed to vary with 

a passage of time around current-zero, in accordance with 

 

 

 

  

  
 

 

 
(
  

 
  )                                                                                  

where   is arc time constant,   is arc power loss. 

At instant of current zero, the power input is zero and therefor,     , in 

equation (2) and we are left with equation (3) as follows: 

 

  

  
   

 

 
                                                                                  

which is homogenous differential equation with solution as follows: 
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Where     is some constant. The parameters   and   are called arc 

parameters. Arc time constant   is defined as the ratio of energy stored per 

unit volume to the energy loss rate per unit volume [p 1.3, 41]. When the 

energy loss rate in the gap increases than energy stored in the gap, time of 

conductivity decay is less (means small time constant). This stored power 

in the gap basically is arc current multiplied with arc voltage. 

 

5.2 Measuring electric conductivity decay near 

current zero 
 

Electric arcs of frequency ranging from 50 Hz to 5kHz with constant 

current amplitude of 10 A has been performed. By increasing the 

frequency (from 50 Hz up to 5000Hz), keeping the amplitude constant, our 

main objective was, to make the slope of current near current zero more 

steep. It was done, in order to find out how different slope of current near 

current zero, effects the time constant means conductivity decay near 

current zero. The gap distance used was 0.11 mm as shown in Fig. 32. 

Figure 38 shows complete setup of the experiment performed. 

 

                

 

 Fig. 32: The electrodes with about 0.11mm gap used for the experiment  

              (Photo: Tatu Nieminen) 
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Fig. 33: Complete setup of the experiment to find out indirect parameters of 

               arc (Photo: Tatu Nieminen) 

 

Arc time constant and power losses, 15 µs before current zero has been 

found. For each frequency sample (for instance 50 Hz and so on), about 

150 zero crossing samples of arc current and arc voltage has been obtained 

from the experiments. Then after, the results were analyzed in MATLAB. 

The current and voltage waveform of the arc contained quite high 

frequency ripples. In order to make the waveform, smoothened, an 

MATLAB filter has been used (see IIR Filter in the appendix). Arc 

conductivity has been obtained by dividing arc current to the arc voltage 

and we obtained 150 samples of arc conductivity, from which an average 

of all the samples is taken. As our main purpose was to obtain, arc 

conductivity decay for specific time before current zero, hence a specific 

amount of sample points before current zero has been taken so that, we 

have, the average conductivity curve with a negative slope (means 

conductivity is decreasing). 
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5.2.1 Procedure to find out arc time constant and power losses for 50 

Hz 

 

For 50 Hz, arc voltage and arc current are shown in Fig. 34, with 

demonstration how the 2000 samples of arc voltage (Yellow color in Fig. 

34) and 2000 of arc current (Black color in Fig. 34) has been taken before 

each current zero. 

     

                Fig. 34: Arc voltage and arc current for 50 Hz frequency 

 

It should be noted that this is the demonstration for one case that how, 

2000 samples before current zero (black color) and 2000 samples before 

voltage zero (Yellow color), are taken as arc current and arc voltage are 

negative, but we take all the 2000 samples before current zero, when arc 

voltage and arc current are both positive and both negative. 

 

After this, input power which is arc voltage times arc current, for all 2000 

samples before current zero (when arc voltage and arc current both 

positive and both negative), has been found out and it can be seen on 

following Fig. 35. 
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Fig. 35: Arc Input power for a number of cycles, 2000 samples before 

              current zero 

 

The curves, which were quite offset (for instance the very upper red curve 

in Fig.35), were removed in few cases  such that we have very accurate 

result, when calculating the average value of all these input power curves 

shown in Fig. 36. The negative sign on horizontal axis of Fig. 36 shows, 

time before current zero. 

           

            

               Fig. 36: Arc average input power for a number of cycles 
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After that Arc conductivity has been found, by dividing arc current to arc 

voltage, by taking each sample point of arc voltage and current, at specific 

time before current zero, for 2000 sample points, for a number of cycles. 

This is demonstrated in Fig. 37. 

      

 

Fig. 37: Arc conductivity for a number of cycles before current and voltage  

              zero 

 

Similar procedure which has been adopted for calculating average input 

power, has been taken in calculating average conductivity. The Fig. 38 

shows the average conductivity decay. 
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            Fig. 38: Arc average conductivity for a number of cycles 

 

In order to find arc time constant and power losses, the procedure 

followed by [44] was adopted which is explained as: 

 

Taking in to account the Mayr’s equation, firstly dg/dt curve, for a specific 

time before current zero has been found which is shown in Fig. 39. 
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                      Fig. 39: dg/dt, 0,2ms before current zero 

 

Then dg/dt/g curve versus time, before current zero has been drawn as 

shown in Fig. 40. 

                          

 

 

                 Fig. 40: dg/dt/g, 0,2ms before current zero 
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After this, dg/dt/g has been plotted with input power. Near to very current 

zero, (which we were scrutinizing the most, in order to find out the 

behavior of conductivity fall), a tangent at different points has been drawn. 

The point, where this tangent in dg/dt/g versus input power graph, meet 

with dg/dt/g=0, from that point a straight vertical line meeting the input 

power axis, has been drawn. The point where this straight vertical line 

meets the input power axis, is the power loss(W) at that specific time.  

 

The point where tangent line meets dg/dt/g axis, with input power=0, has 

been divided by one, which is finally arc time constant (sec) at that 

specific time. 

 

A more closer look of this procedure is shown in Figure 41. 

 

 

 

Fig. 41: Method showing, how arc time constant and power losses has been  

              found 

 

 

Arc time constant and arc power losses for 0,2 ms, before current zero, can 

be seen in Figure 42 and Fig. 43 respectively. 
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                Fig. 42: Arc time constant, 0.2 ms before current zero 

                      

 

                                   Fig. 43: Arc power losses 
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After finding, arc time constant and arc power losses at each specific time, 

these values has been put in the basic Mayr arc model and then arc 

conductivity has been found out in order to check our results. The 

following Fig. 44, shows the arc conductivity using Mayr model after 

filling arc parameters at each specific time. 

 

                 

 

 

Fig. 44: Arc conductivity using Mayr arc model, after filling arc parameters 

 

It should be noted that all these demonstration shown is for 50 Hz 
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5.2.2 Results 
    

The results obtained from this measurement can be seen in Figure 45 and 

Figure 46, below. 

  

  Fig. 45: Arc Input power and Power losses at different frequency

 

 

Fig. 46: Arc time constant 15µs before current zero at different frequencies 
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5.2.3 Discussion 
 

With the increase in frequency, the arc power losses, using the procedure 

[44], has sometimes positive and sometimes negative value. The negative 

power loss  at some specific frequency means, 15 µs before current zero, 

tangent on dg/dt/g curve on dg/dt/g versus power input graph graph meets 

the dg/dt/g=0, line at negative value of input power. From these results of 

measuring arc time constant and power loss, with the increase of 

frequency, no strong conclusion can be concluded. 

 

5.2.4 Comparison of the results with other research work 
 

In experiment done by [44], where circuit breaker contacts in Co2 medium 

with pressure of 0,2 Mpa, gets apart on initiation of fault  with arc current 

of 1,7 kA (peak value) with gap distance which increases from 0 to 

15,4mm (Fig. 47) where arc interrupts, arc parameters has been found, 2µs 

before current zero. It should be noted that in [44], arc parameters has 

been found when the interruption was successful. This means arc 

conductivity value has been found from last waveforms current and 

voltage. Arc time constant and arc power losses, 2µs before current were 

1,3 µs and 0,32 kW respectively. 

According to [48], the arc time constant for air at 0,2 Mpa with arc current 

frequency of 45 kHz, were also found out to be range of few µs, but again 

this was the case when interruption was successful. 

It should be noted that in our experiment, arc parameters has been found 

when there was no interruption which means that current and voltage 

waveforms were continuous. The input power in [44], was much higher 

than in our case as peak arc current in our case was 10A. 
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As there has been no interruption in our case, hence we expect arc time 

constant to be larger than few µs; which was the case, as arc time constant 

found out to be in range of ms (Fig. 46). Arc power losses were found out 

to be also small, because arc during the experiment did not interrupt. 

Because if it would have been interrupted then we would expect more 

power losses. According to [48], arc time constant of air are greater than 

that of Co2. 

           

                 

      Fig. 47: Arc current, arc voltage and distance between the gap [44] 

5.3 Effect of temperature on breakdown voltage 

 

The second experiment has been performed in order to find out the effect 

of temperature on breakdown voltage in air for different five materials. 

The cross section of the material used as electrode was circular with 

electrode shape being rounded. Five materials used, in order to find out the 

differences of the effect of temperature on breakdown voltage of air, are as 

follows: 
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1. Stainless steel 

2. Aluminum 

3. Copper 

4. Brass 

5. Iron 

 

The diameter of the rods used was 20mm. A furnace has been used to set a 

particular temperature, and rods were immersed in this furnace shown in 

Fig.48. This causes a uniform temperature between electrode gap. 

Complete setup of the experiment performed can be seen in Fig. 50. The 

breakdown voltage has been measured from ambient temperature until 

before, 100-200 degrees less than the melting temperature of the material 

rod used. The applied voltage used was sinusoidal with rise time of 1kV/s. 

The distance between the gap has been kept 5mm with an error in the 

precision of 0,2mm. As there is extension in the material with rise in 

temperature and as the structure of the material used is cylindrical with 

rounded edges, there has  been extension of the material radially as well as 

axially. So when performed the test, each time when temperature has been 

increased, there has been material extension axially as well as radially. 

That means, when raised the temperature in the furnace, after the test in 

ambient air with the gap distance of 5mm, the gap distance has been less 

than 5mm due to axial extension.  So each time, when temperature has 

been raised, the  gap has been adjusted to 5mm, so that a good comparison 

of the result can be made at same gap distance. This adjustment has been 

done with the help of meter shown in Figure 49, such that when 

temperature in the furnace increased from one point to the next, before 

measuring the next temperature breakdown voltage value, the electrodes 

were brought together such that they touch and then by seeing the reading 

from the meter, 5mm gap has been set. 
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Fig. 48: Furnace used to raise the temperature of the space between gap to a  

              set point (Photo: Tatu Nieminen) 

 

 

 

  

    

Fig. 49: Meter used to set 5mm gap, after expansion of the material (Photo:  

              Tatu Nieminen) 
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    Fig. 50: Complete setup of the experiment with a transformer (Photo: Tatu 

                                                          Nieminen) 

 

 

 

5.4 Measurements 
 

Test 1: Stainless steel  

 

First, test has been performed with stainless steel. The ambient 

temperature was 21,9 oC, with Relative humidity 15,4 %, Absolute 

humidity 2,97 g/m3 and with pressure 1020,1 hpa on the day this 

experiment has performed. The melting point of stainless steel is 1510 oC 

[18], therefore temperature at which last breakdown voltage measurement 

has been done, was 1300 oC. 

 

Test 2: Aluminum 

 



68 
 

Second, test has been performed with Aluminum. The ambient 

temperature was 23,4 oC, with Relative humidity 33 %, Absolute humidity 

6,945 g/m
3
 and with pressure 1017,27 hpa on the day this experiment has 

performed. The melting point of stainless steel is 660 oC [18], therefore 

temperature at which last breakdown voltage measurement has been done 

was 400 oC. 

 

Test 3: Copper 

 

Third, test has been performed with Copper. The ambient temperature was 

22,5 oC, with Relative humidity 42,4 %, Absolute humidity 8,476 g/m
3
 

and with pressure 1006,33 hpa on the day this experiment has performed. 

The melting point of stainless steel is 1084 oC [18] therefore temperature 

at which last breakdown voltage measurement has been done was 850 oC. 

 

 

Test 4: Iron 

 

Fourth, test has been performed with iron. The ambient temperature was 

22,2 oC, with Relative humidity 19,1 %, Absolute humidity 3,753 g/m
3
 

and with pressure 1006,24 hpa on the day this experiment has performed. 

The melting point of iron is 1536 oC [18], therefore temperature at which 

last breakdown voltage measurement has been done was 1350 oC. 

 

Test 5: Brass 

 

Fifth, test has been performed with Brass. The ambient temperature was 

22,9 oC, with Relative humidity 24 %, Absolute humidity 4,909 g/m
3
 and 

with pressure 1003,46 hpa on the day this experiment has performed. The 
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melting point of iron is 930 oC [18], therefore temperature at which last 

breakdown voltage measurement has been done was 765 oC. 

 

The variation of breakdown voltage of air with temperature, using 

different electrode material can be seen in Fig. 51. 

 

5.5 Test Results 
 

From the results shown in Fig. 51, we can see that for all the materials the 

breakdown voltage decreases more or less in the same fashion when 

temperature of the electrode as well as between the electrode gap, 

increases (as the electrode were immersed in furnace, so when temperature 

in the furnace is raised, the electrode temperature also gets increased). It is 

also very interesting to know that for Iron and Stainless steel, the 

breakdown voltage stay constant for some temperature variation (for Iron 

breakdown voltage stay constant from 1000 
o
C to 1200 

o
C and for 

Stainless steel breakdown voltage stay constant from 1000 
o
C to 1150 

o
C 

and then it decreases again following the original trend. 



70 
 

 

Fig. 51: Variation of breakdown voltage with temperature increase for different 

              electrode materials 

5.6 Comparison with other research work 

 

In a research carried out to find out effect of temperature on 

breakdown voltage in air [47], it has been found that for millimetric 

gap, in an approximately uniform field, breakdown voltage is 

independent of the electrode material, where the electrode material 

used has been Copper, Elkonite (tungsten-copper) and Nimonic 

(nickel-chromium) and gap distance used were from 0,5mm, 1mm 

and 2 mm. In our experiments, the electric field was also nearly 

uniform due to rounded edge electrodes, and the difference of the 

value of  breakdown voltage at specific temperature for different 

materials was found out to be not very large. It is also good to notice 

the fashion in which breakdown voltage in [47] decreases with 

increase in temperature, matches with our results. 
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Chapter 6 

6 CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion 
 

From this research work, it can be concluded that electric arc being 

complex phenomenon, depends on many factors, for instance the electrode 

gap space, electrode material, humidity etc. One of the important factor, 

that it highly depends on, is temperature. It can be concluded that the 

success of arc interruption depends on the temperature of the space 

between gap, as we can see from results of experiment 2, the breakdown 

voltage decreases with increases in temperature of the space between the 

gap. However it does not mean that increase in temperature give a linear 

decrease in breakdown voltage in open air as for a specific temperature 

rise, the breakdown voltage remains constant. There was not much 

difference in breakdown voltage for different electrode material used as 

electrode in air when temperature of the space as well as of the electrode 

has been increased. Our results match with [47], who says that in uniform 

E-field, the breakdown voltage is independent of the material of the 

electrode used.  

Arc conductivity measurement, to get deeper understanding of interruption 

or failure of arc, is a good factor to look on. As concluded by [27], there 

must be some limiting value of arc conductivity, no matter what the 

voltage rating of the equipment, such that if the arc conductivity crosses 

that value, then reignition occurs. But from measured arc time constant 

and power losses values, we were not able to conclude that how increase 

in frequency hence increase in current slope effect the arc time constant. 

However as expected, for our case where there was no interuuption, arc 

time constant comes out to be in range of ms where in other researches 
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[44],[48], where there has been interruption, it came out to be in range of 

µs. 

From the literature study used in this research, we can conclude that for 

short gap arcs the electrode material has dominating effect due to 

immediate recovery of cathode layer as well as quite low temperature of 

the electrodes than the arc column;  however with gap greater than a inch, 

the gas in space between the electrode gap has dominating effect. 

 

6.2 Future work 
 

As for experiment 2, performed during this research work, a arc furnace 

has been used which increases the temperature of the electrode material as 

well as the air space in the gap. Therefore we found the breakdown 

voltage dependence on temperature. However it is good to know how only 

the heated air affects the breakdown voltage and how the heated  electrode 

only effect the breakdown voltage in air for millimetric gaps. It will give 

us better understanding that, for short gap (in our case 5mm), which has 

the dominating effect on breakdown voltage, is it heated space in the gap 

or heated electrodes. This can be done for instance by heating the 

electrode, in furnace and then taking out of it in atmospheric air, and 

applying the voltage across the electrodes. The another test which will 

give the affect of heated space only on breakdown voltage, can be 

performed by, firstly heating the arc furnace and then immersing the cool 

electrodes in it. 
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APPENDIX 

1. Matlab commands for measuring arc time constant 

1.1 Matlab commands for 50 Hz, to find out arc time constant and 

               power losses 

 

clear all; 
close all; 
clc 

  
%Loading the sample points of measured arc current waveform 

and naming it 
%''Current'' 
current=ReadLeCroy('C2ballgapcurrent_50hz00000.trc'); 

  
%ZeroCSamples is a function built which gives number of 

samples points for 
%one complete sin cycle, we are dividing by 100 as we need 

2000 samples 
%before current zero 
samples = ZeroCSamples(current)/100;  

  
%IIR Filter is a filter made to remove, ripples of very 

high frequency 
%components from current and voltage waveforms of arc 
newcurrent=IIRfilter(current.y,samples); 
figure(1) 
%plot(current.x,current.y) where current.x represents time 

sample points 
hold on; 
grid on; 
plot(current.x,newcurrent,'m') 
title('Current(A)')  

  
%EtsiNollat function find the zeros of newcurrent as 

newcurrent is filtered 
%waveform of current 
currentZeros = EtsiNollat(newcurrent); 
%Now we will find the indices where zeros of newcurrent 

occurs 
currentZeroind = find(currentZeros); 
%Now we will take all 2000 indicices before current zero 
currentIndLow = currentZeroind-samples; 
currentIndHigh = currentZeroind-floor(samples/1000); 

  
%Same procedure goes for voltage waveform  
voltage=ReadLeCroy('C1ballgapcurrent_50hz00000.trc'); 
newvoltage=IIRfilter(voltage.y,samples); 
voltageZeros = EtsiNollat(newvoltage); 
voltageZeroind = find(voltageZeros); 
voltageIndLow = voltageZeroind-samples; 
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voltageIndHigh = voltageZeroind-floor(samples/1000); 

  

  
figure(2) 

  
hold on; 
grid on; 
plot(voltage.x,newvoltage,'m') 
%plot(voltage.x,current.y) where voltage.x represents time 

sample points 
%hold on; 
grid on; 
plot(current.x,newcurrent,'g') 

  
hold on; 
hold all; 
grid on; 

  
for k=60 

   
 

plot(voltage.x(voltageIndLow(k):voltageIndHigh(k)),newvolta

ge(voltageIndLow(k):voltageIndHigh(k)),'y*') 
  

plot(current.x(currentIndLow(k):currentIndHigh(k)),newcurre

nt(currentIndLow(k):currentIndHigh(k)),'k*') 

   
end 
legend('newvoltage','newcurrent') 
title('Arc Voltage and Arc current after filter') 
xlabel('Time[sec]') 

  
hold off; 

  

  

  
%The following will show how many times we have current 

zero 
koko = length(currentZeroind); 
koko2 = currentIndHigh(1)-currentIndLow(1); 
conductivity = zeros(koko,koko2+1); 
figure(3); 
hold all; 
grid on; 

  
%The following loop will give input power for a number of 

cyles, 2000 
%samples before current zero 

  
for k=1:koko 
power(k,:)= 

(newcurrent(currentIndLow(k):currentIndHigh(k)).*newvoltage

(voltageIndLow(k):voltageIndHigh(k))); 
plot(power(k,:)); 
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title('VI, Power Input[W]') 
xlabel('2000 samples points before current zero') 
ylabel('Power Input[W]') 
end 
figure(4); 
hold all; 
grid on; 

  
%Taking average of input power for a number of cycle at 

specfic time 
e= mean(power(1:koko,1:1999)); 
t=[-200e-6:0.1e-6:-0.0002e-003]; 
plot(t,e) 
title('Average input power Before Current Zero(W)') 
xlabel('Time [sec] before current zero') 
ylabel('Average Input Power[W]') 
figure(5); 
hold all; 
grid on; 

  
%The following loop will give conductivity for a number of 

cyles, 2000 
%samples before current zero 
for k=1:koko 
    conductivity(k,:) = 

(newcurrent(currentIndLow(k):currentIndHigh(k))./newvoltage

(voltageIndLow(k):voltageIndHigh(k))); 
plot ((conductivity(k,:))); 
title('Conductivity decay before current zero') 
xlabel('2000 samples points before current zero') 
ylabel('Conductivity [S]') 
end 
figure(6); 
%Taking average conductivity for a number of cycle at 

specfic time 
g= mean(conductivity(1:koko,1:1999));grid on; 
plot(g); 
title('Average Conductivity Before Current Zero'); 
xlabel('2000 samples points before current zero') 
ylabel('Conductivity [S]') 
figure(7);grid on; 
%Average condcutivity with time stamp 
plot(t,g) 
title('Average Conductivity Before Current Zero') 
xlabel('Time [sec] before current zero') 
ylabel('Average Conductivity [S]') 

  
%The following loop will give the slope between two data 

points of 
%conductvity 
for i=1:1998 
     slope(:,i)=(g(i+1)-g(i))/(t(i+1)-t(i)); 
end 
figure(8);grid on; 
%Plotting slope with time 
plot(t(1:1998),slope(1:1998)); 
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title('dg/dt') 
xlabel('Time [sec] before current zero') 
ylabel('dg/dt') 

  
figure(9); 
grid on; 
%dg/dt/g=slope_conductivity 
slope_conductivity=(slope./g(1:1998)); 
plot(t(1:1998),slope_conductivity) 
title('dg/dt/g') 
xlabel('Time [sec] before current zero') 
ylabel('1/g *dg/dt') 

 

   

  
r=e(1:1998); 
r1=fliplr(r); 
slope_conductivity1=fliplr(slope_conductivity); 
m=diff(slope_conductivity1)./diff(r1); 

  
for i=1:(length(r1)-1) 
y_intercept(i)=(slope_conductivity1(i)-m(i)*r1(i)); 
time_constant(i)=1/(y_intercept(i)); 
x_intercept(i)=((m(i)*r1(i))-slope_conductivity1(i))/m(i); 
end 
figure(10); 
grid on; 
plot(r,slope_conductivity) 
hold on; 
syms x 
ezplot(m(17)*(x)+y_intercept(17)) 
hold off; 
title('dg/dt/g  vs Input Power') 
xlabel('Input power vi(W)'); 
ylabel('(dg/dt)/g[per sec])'); 
l=[-0.0004e-003:-0.1e-6:-200e-6]; 
figure(11); 
grid on; 
plot(l, -(time_constant)) 
xlabel('time[sec]') 
ylabel('time constant [sec]') 
k=fliplr(x_intercept); 
%slope=dg/dt 
j=fliplr(time_constant); 
%tr is new conductivity(g) after filling arc parametrs in 

basic Mayr 
%equation 
for i=1:1997   
tr(i,:)= ((slope(i)).*(-j(i)))/((e(i)./k(i))-1);             
end 
figure(12); 
grid on; 
%Plotting, to check is, after filling the mesured arc 

parametrs in Mayr 
%equation, do we get the same counductivity curve 
plot(t(1:1997),tr)   
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title('New Conductivity after filling arc parameters') 
xlabel('time before current zero') 
ylabel('g[S]') 
figure(13); 
grid on; 
plot(t(900:1997),k(900:1997)) 
xlabel('time[sec]') 
ylabel('Power losses (W)') 
title('time vs Power losses') 

 

1.2 Filter used to remove the high frequency ripple in measured 

               waveforms 

 

function odata = IIRfilter(idata,r) 

  
rip = .05;  % passband ripple in dB 
nfilt = 8; 
[b,a] = cheby1(nfilt, rip, 1/r); 
while all(b==0) || (abs(filtmag_db(b,a,1/r)+rip)>1e-6) 
nfilt = nfilt - 1; 
if nfilt == 0 
break 
end 
    [b,a] = cheby1(nfilt, rip, 1/r); 
end 

 
if nfilt == 0 
error(message('signal:decimate:InvalidRange')) 
end 

 

1.3 Filter used to find zero crossing of sine waveform 

 

%This function finds the zero crossing of the sine waveform 
function out = EtsiNollat(in) 

  
flen = length(in); 
maxin = max(abs(in)); 
out = (abs(in)/maxin)<1/750; 
startind = 0; 
for ind = 1:flen 
if out(ind) 
if startind == 0 
startind = ind; 
%starty = in(ind); 

end 
out(ind) = 0; 
else 
if startind 
indl = ind + 10; 
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if indl > flen 
indl = flen; 
end 
if sum(out(ind:indl)) == 0 
endind = ind; 
valiaika = endind-startind; 
middle = floor(valiaika/2); 
out(startind+middle) = 1; 
%               disp(['välinkeskeltä ', 

num2str(startind+middle)]); 
%                disp(['väliaika ', num2str(valiaika)]); 
startind = 0; 
end 
end 
end 
end 
end 

 

 

1.4 Measured value of arc parameters at different frequencies 

 

clear all; 
close all; 
clc 

  
% Power losses and Arc time constant at different value of 

frequency, 
% 15 us,before current zero  
Frequency= [50 100 150 300 500 800 1200 1500 1800 2200 2800 

3500 4000 4300 4700 5000 ]; 

 
PowerLosses= [0.1190000 -1.1470000 -0.8915000 -2.0400000 -

2.3840000  -4.5490000 -9.1950000 -11.3100000 -9.1400000 -

17.7700000 39.8400000 -127.1000000 89.1400000  -122.0000000 

-78.0200000 16.9900000 ]; 

 
TimeConstant= [0.0005730 0.0005440 0.0005277 0.0004438 

0.0005305 0.0002264 0.0002970 0.0003453 0.0003471 0.0003476 

0.0001103 0.0001212 0.0002038 0.0001910 0.0001489 0.0012410    

]; 
InputPower=[ 0.0080930 0.0230600 0.0437900 0.1116000 

0.1989000 0.6387000 2.2930000 1.9090000 1.7600000 2.2140000 

4.3340000 8.1860000 6.4540000 17.2400000 11.6000000 

7.1070000   ]; 

  
figure (1) 
%Time Constant 

  

  
hand2=plot(Frequency,TimeConstant,'r-*');grid on; 

  
set(hand2, 'LineWidth', 2); 
legend('Time Constant') 
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xlabel('Frequency [Hz]') 
ylabel('Time constant [sec]') 

  

  
figure (2) 
%Power Losses 
hand1=plot(Frequency,PowerLosses,'k-*') 
set(hand1, 'LineWidth', 2); 

  
hold on; 

  
%Input Power 

  

  
grid on; 
hand3=plot(Frequency,InputPower,'m-*'); 
set(hand3, 'LineWidth', 2); 

  

  

  

  
hold off; 

  
%axis([0 1400 0 14]) 
xlabel('Frequency[Hz]') 
ylabel('Power [W]') 
%set(gca,'XTick',0:100:1400) 
legend('PowerLosses', 'InputPower') 

 

 

2 Measured values from the experiment in order to find 

 the effect of temperature on breakdown voltage 

 

 

Test 1: Stainless steel  

 

A.) Measurement at ambient temperature 21,9 
o
C 

 

                           

 
 

B.) Measurement at 150
 o
C 

Breakdown voltage (kV) at ambient temperature 21,9 oC

1 2 3 4 5 6 7 8 9 10 Average

12,9800 12,9700 12,7300 12,9700 12,4900 12,7100 12,9800 12,8200 12,7800 12,5300 12,7960
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C.) Measurement at 250
 o
C 

                          

 
 

D.) Measurement at 400 
o
C 

                 

 
 

E.) Measurement at 550 
o
C 

 
 

F.) Measurement at 700 
o
C 

 

 
 

 

 

G.) Measurement at 850 
o
C 

 

 
 

H.) Measurement at 1000 
o
C 

 

 
 

I.) Measurement at 1150 
o
C 

 

 
 

J.) Measurement at 1300 
o
C 

 

 

Breakdown voltage (kV) at ambient temperature 150 oC

1 2 3 4 5 6 7 8 9 10 Average

11,0900 11,0100 10,9600 10,7500 11,2300 10,8600 11,2900 10,9800 11,2500 10,9000 11,0320

Breakdown voltage (kV) at ambient temperature 250 oC

1 2 3 4 5 6 7 8 9 10 Average

10,4250 10,2260 10,1600 9,8514 10,0150 10,0480 10,0660 9,8248 9,3062 9,8102 9,9733

Breakdown voltage (kV) at ambient temperature 400 oC

1 2 3 4 5 6 7 8 9 10 Average

8,4255 8,3216 8,2031 7,9244 7,5808 8,2210 7,9809 8,3356 8,5300 8,1820 8,1705

Breakdown voltage (kV) at ambient temperature 550 oC

1 2 3 4 5 6 7 8 9 10 Average

6,4221 6,4458 6,3404 6,1976 6,3264 6,3341 6,1817 6,1653 6,0262 6,0628 6,2502

Breakdown voltage (kV) at ambient temperature 700 oC

1 2 3 4 5 6 7 8 9 10 Average

4,4594 4,4383 4,3825 4,2313 4,2637 4,2527 4,2597 4,1950 4,0688 4,1150 4,2666

Breakdown voltage (kV) at ambient temperature 850 oC

1 2 3 4 5 6 7 8 9 10 Average

4,0566 2,8919 3,0098 3,0445 2,9215 2,8248 2,8200 2,9138 2,8376 2,8376 3,0158

Breakdown voltage (kV) at ambient temperature 1000 oC

1 2 3 4 5 6 7 8 9 10 Average

3,7200 3,3400 3,4700 3,3400 3,4800 3,5400 3,6500 3,6500 3,7500 3,3400 3,5280

Breakdown voltage (kV) at ambient temperature 1150 oC

1 2 3 4 5 6 7 8 9 10 Average

3,7174 3,3444 3,4669 3,3422 3,4773 3,5398 3,6520 3,6468 3,7528 3,3395 3,5279

Breakdown voltage (kV) at ambient temperature 1300 oC

1 2 3 4 5 6 7 8 9 10 Average

2,1066 2,0449 2,0320 2,0700 2,0316 1,9906 2,0356 2,0310 2,0653 1,9821 2,0390
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Test 2: Aluminum 

 

A.) Measurement at 23,4 
o
C 

 
 

B.) Measurement at 80 
o
C 

 

 
 

C.) Measurement at 140 
o
C 

 

 
 

 

 

 

D.) Measurement at 190 
o
C 

 

 
 

E.) Measurement at 230 
o
C 

 

 
 

F.) Measurement at 270 
o
C 

 
 

G.) Measurement at 300 
o
C 

 

 
 

H.) Measurement at 355 
o
C 

 
 

I.) Measurement at 400 
o
C 

Breakdown voltage (kV) at ambient temperature 23,4 oC

1 2 3 4 5 6 7 8 9 10 Average

11,7470 12,6460 12,2060 12,2060 12,3830 12,3620 12,3770 12,4810 12,4750 12,5060 12,3389

Breakdown voltage (kV) at ambient temperature 80 oC

1 2 3 4 5 6 7 8 9 10 Average

11,4890 11,5280 11,4970 11,5240 11,4920 11,4710 11,4650 11,4400 11,3880 11,3410 11,4635

Breakdown voltage (kV) at ambient temperature 140 oC

1 2 3 4 5 6 7 8 9 10 Average

10,5590 10,5455 10,5310 10,5040 10,6180 10,5370 10,5680 10,5620 10,5360 10,5540 10,5515

Breakdown voltage (kV) at ambient temperature 190 oC

1 2 3 4 5 6 7 8 9 10 Average

9,8898 10,0330 9,9458 9,9974 9,9495 9,9733 10,0100 9,8745 9,8604 9,8555 9,9389

Breakdown voltage (kV) at ambient temperature 230 oC

1 2 3 4 5 6 7 8 9 10 Average

9,2064 9,0341 8,8556 8,9092 8,9200 8,8849 8,9056 8,8808 8,9067 8,9055 8,9409

Breakdown voltage (kV) at ambient temperature 270 oC

1 2 3 4 5 6 7 8 9 10 Average

8,6426 8,5904 8,4988 8,5756 8,5529 8,5157 8,5566 8,4593 8,5115 8,5367 8,5440

Breakdown voltage (kV) at ambient temperature 300 oC

1 2 3 4 5 6 7 8 9 10 Average

8,4717 8,4852 8,4359 8,5225 8,3752 8,3974 8,4542 8,4289 8,4335 8,4251 8,4430

Breakdown voltage (kV) at ambient temperature 355 oC

1 2 3 4 5 6 7 8 9 10 Average

8,4159 8,2090 8,2743 8,0475 8,8146 8,0478 8,1386 8,1314 8,1575 8,1061 8,2343
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Test 3: Copper 

A.) Measurement at 22,5 
o
C 

 

 
 

 

 

 

 

 

B.) Measurement at 90 
o
C 

 

 
 

 

C.) Measurement at 165 
o
C 

 

 
 

D.) Measurement at 230 
o
C 

 

 
 

E.) Measurement at 300 
o
C 

 

 
 

F.) Measurement at 370 
o
C 

 

 
 

Breakdown voltage (kV) at ambient temperature 400 oC

1 2 3 4 5 6 7 8 9 10 Average

8,2188 8,0491 8,0011 7,9210 8,0162 7,8410 7,9097 7,9677 8,0783 7,8552 7,9858

Breakdown voltage (kV) at ambient temperature 22,5 oC

1 2 3 4 5 6 7 8 9 10 Average

12,2050 12,4990 12,2330 12,5980 12,2080 12,5190 12,3280 12,3830 12,8920 12,5280 12,4393

Breakdown voltage (kV) at ambient temperature 90 oC

1 2 3 4 5 6 7 8 9 10 Average

12,2010 12,0880 11,7920 11,6900 11,7260 11,5650 11,6210 11,7610 11,5840 11,4950 11,7523

Breakdown voltage (kV) at ambient temperature 165 oC

1 2 3 4 5 6 7 8 9 10 Average

11,1920 10,2230 10,1880 10,2170 10,1630 10,0300 10,1300 10,1640 10,0870 10,1450 10,2539

Breakdown voltage (kV) at ambient temperature 230 oC

1 2 3 4 5 6 7 8 9 10 Average

9,6656 9,6851 9,7416 9,5526 9,5241 9,4710 9,4721 9,5239 9,4476 9,4365 9,5520

Breakdown voltage (kV) at ambient temperature 300 oC

1 2 3 4 5 6 7 8 9 10 Average

8,9538 9,0229 8,9324 8,6962 8,5661 8,5928 8,5487 8,4834 8,3450 8,4333 8,6575

Breakdown voltage (kV) at ambient temperature 370 oC

1 2 3 4 5 6 7 8 9 10 Average

8,1158 7,8989 7,8323 7,9466 7,8195 7,8639 7,9722 8,1076 7,8169 7,8388 7,9213
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G.) Measurement at 440 
o
C 

 

 
 

H.) Measurement at 510 
o
C 

 

 
 

 

 

 

I.) Measurement at 600 
o
C 

 
 

J.) Measurement at 680 
o
C 

 

 
 

K.) Measurement at 760 
o
C 

 

 
 

L.) Measurement at 850 
o
C 

 

 

 
 

 

Test 4: Iron 

 

A.) Measurement at ambient temperature 22,2 
o
C 

 
 

B.) Measurement at 100 
o
C 

 

Breakdown voltage (kV) at ambient temperature 440 oC

1 2 3 4 5 6 7 8 9 10 Average

8,5582 7,7886 7,5159 7,6240 7,6307 7,6623 7,5228 7,4967 7,5631 7,4446 7,6807

Breakdown voltage (kV) at ambient temperature 510 oC

1 2 3 4 5 6 7 8 9 10 Average

7,8012 7,2769 7,3407 7,2220 7,1571 7,1386 7,3636 7,1044 7,3552 7,1450 7,2905

Breakdown voltage (kV) at ambient temperature 600 oC

1 2 3 4 5 6 7 8 9 10 Average

7,1140 6,7023 6,3744 6,5014 6,3817 6,3542 6,3169 6,4786 6,3264 6,2146 6,4765

Breakdown voltage (kV) at ambient temperature 680 oC

1 2 3 4 5 6 7 8 9 10 Average

6,0242 5,9318 5,8455 5,8520 5,8246 5,8081 5,7306 5,8121 5,7450 5,7380 5,8312

Breakdown voltage (kV) at ambient temperature 760 oC

1 2 3 4 5 6 7 8 9 10 Average

5,2474 5,3196 5,3461 5,3014 5,2956 5,2720 5,2542 5,1670 5,2255 5,2314 5,2660

Breakdown voltage (kV) at ambient temperature 850 oC

1 2 3 4 5 6 7 8 9 10 Average

4,9182 4,9092 4,8620 4,8921 4,8352 4,8440 4,8338 4,8401 4,7960 4,7783 4,8509

Breakdown voltage (kV) at ambient temperature 22,2 oC

1 2 3 4 5 6 7 8 9 10 Average

11,0400 12,0180 12,1670 12,1650 12,2130 12,2130 12,1710 12,2490 12,2520 12,1830 12,0671

Breakdown voltage (kV) at ambient temperature 100 oC

1 2 3 4 5 6 7 8 9 10 Average

11,2690 11,2820 11,3220 11,2970 11,3140 11,3310 11,3190 11,3340 11,2870 11,3120 11,3067
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C.) Measurement at 225 
o
C 

 

 
 

D.) Measurement at 350 
o
C 

 
E.) Measurement at 475 

o
C 

 

 
 

F.) Measurement at 600 
o
C 

 

 
 

G.) Measurement at 725 
o
C 

 

 
 

H.) Measurement at 850 
o
C 

 

 
 

I.) Measurement at 975 
o
C 

 
 

I.) Measurement at 1100 
o
C 

 

 
 

I.) Measurement at 1225 
o
C 

 

 

 

Breakdown voltage (kV) at ambient temperature 225 oC

1 2 3 4 5 6 7 8 9 10 Average

9,4895 9,3832 9,4681 9,4462 9,4046 9,3820 9,4042 9,3368 9,2975 9,3067 9,3919

Breakdown voltage (kV) at ambient temperature 350 oC

1 2 3 4 5 6 7 8 9 10 Average

7,0082 8,0728 7,9900 7,9542 7,9862 7,9992 8,0040 7,9138 7,9397 7,8455 7,8714

Breakdown voltage (kV) at ambient temperature 475 oC

1 2 3 4 5 6 7 8 9 10 Average

6,9591 6,8533 6,8986 6,8088 6,7518 6,6872 6,7428 6,7418 6,6339 6,6946 6,7772

Breakdown voltage (kV) at ambient temperature 600 oC

1 2 3 4 5 6 7 8 9 10 Average

5,9044 5,7837 5,8037 5,8002 5,7392 5,7007 5,6470 5,6461 5,6698 5,6356 5,7330

Breakdown voltage (kV) at ambient temperature 725 oC

1 2 3 4 5 6 7 8 9 10 Average

4,6309 4,4579 4,6213 4,6586 4,6520 4,5850 4,5753 4,5390 4,5106 4,5300 4,5761

Breakdown voltage (kV) at ambient temperature 850 oC

1 2 3 4 5 6 7 8 9 10 Average

4,2059 4,2346 4,2214 4,2291 4,2232 4,2037 4,1627 4,1314 4,1084 4,1595 4,1880

Breakdown voltage (kV) at ambient temperature 975 oC

1 2 3 4 5 6 7 8 9 10 Average

3,6637 3,5377 3,5285 3,5217 3,5174 3,5566 3,5275 3,4702 3,5211 3,5524 3,5397

Breakdown voltage (kV) at ambient temperature 1100 oC

1 2 3 4 5 6 7 8 9 10 Average

3,5067 3,5686 3,5708 3,4994 3,5028 3,5475 3,5491 3,5201 3,5783 3,5045 3,5348

Breakdown voltage (kV) at ambient temperature 1225 oC

1 2 3 4 5 6 7 8 9 10 Average

3,5439 3,5853 3,5217 3,5146 3,5475 3,4630 3,5519 3,5336 3,4065 3,4910 3,5159
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I.) Measurement at 1290 
o
C 

 

 
I.) Measurement at 1350 

o
C 

 
 

 

Test 5: Brass 

 

A.) Measurement at ambient temperature 22,9 
o
C 

 

 
 

B.) Measurement at 90 
o
C 

 

 
 

C.) Measurement at 165 
o
C 

 
 

D.) Measurement at 240 
o
C 

 

 
 

E.) Measurement at 315 
o
C 

 

 
 

F.) Measurement at 390 
o
C 

 

 
 

 

 

Breakdown voltage (kV) at ambient temperature 1290 oC

1 2 3 4 5 6 7 8 9 10 Average

2,5469 2,5860 2,5214 2,5225 2,5499 2,5844 2,5202 2,6348 2,5988 2,6669 2,5732

Breakdown voltage (kV) at ambient temperature 1350 oC

1 2 3 4 5 6 7 8 9 10 Average

2,2564 2,2063 2,1720 2,2654 2,2208 2,2293 2,2663 2,1410 2,1572 2,1928 2,2108

Breakdown voltage (kV) at ambient temperature 22,9 oC

1 2 3 4 5 6 7 8 9 10 Average

12,2660 13,1380 12,9210 12,7510 13,0350 12,7020 12,4390 12,6050 13,0210 12,5760 12,7454

Breakdown voltage (kV) at ambient temperature 90 oC

1 2 3 4 5 6 7 8 9 10 Average

12,8020 12,1200 11,8290 12,0590 12,0860 11,6730 11,9870 11,9220 12,3760 12,4344 12,1288

Breakdown voltage (kV) at ambient temperature 165 oC

1 2 3 4 5 6 7 8 9 10 Average

10,1400 9,8230 10,2900 10,2810 10,3550 9,9585 9,8318 10,2340 10,0860 9,8662 10,0866

Breakdown voltage (kV) at ambient temperature 240 oC

1 2 3 4 5 6 7 8 9 10 Average

8,6423 8,8826 8,7292 8,9104 8,9562 8,9860 9,0248 8,8054 8,8848 8,7506 8,8572

Breakdown voltage (kV) at ambient temperature 315 oC

1 2 3 4 5 6 7 8 9 10 Average

8,0414 7,9270 8,3375 8,1903 7,8550 7,9702 7,9654 8,0846 7,9946 7,9756 8,0342

Breakdown voltage (kV) at ambient temperature 390 oC

1 2 3 4 5 6 7 8 9 10 Average

7,3601 7,2304 7,3221 7,2943 7,2433 7,2714 7,2412 7,2323 7,2406 7,2195 7,2655
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G.) Measurement at 465 
o
C 

 

 
 

H.) Measurement at 540 
o
C 

 

 
 

I.) Measurement at 615 
o
C 

 

 
 

I.) Measurement at 690 
o
C 

 

 
 

I.) Measurement at 765 
o
C 

 

 
 

 

Breakdown voltage (kV) at ambient temperature 465 oC

1 2 3 4 5 6 7 8 9 10 Average

7,0131 7,0003 6,9506 6,9267 6,8440 6,8637 6,9429 6,8353 6,9371 6,8010 6,9115

Breakdown voltage (kV) at ambient temperature 540 oC

1 2 3 4 5 6 7 8 9 10 Average

6,5387 6,4351 6,5134 6,4142 6,4138 6,4609 6,4970 6,4031 6,2987 6,4336 6,4409

Breakdown voltage (kV) at ambient temperature 615 oC

1 2 3 4 5 6 7 8 9 10 Average

5,7983 5,7880 5,7069 5,7812 5,7590 5,7375 5,6905 5,6862 5,6287 5,6711 5,7247

Breakdown voltage (kV) at ambient temperature 690 oC

1 2 3 4 5 6 7 8 9 10 Average

5,1462 5,1656 5,1540 5,1499 5,1029 5,0671 5,1187 5,0664 5,0172 5,0074 5,0995

Breakdown voltage (kV) at ambient temperature 765 oC

1 2 3 4 5 6 7 8 9 10 Average

4,4459 4,6275 4,5943 4,6093 4,6466 4,6351 4,6977 4,6620 4,7248 4,6922 4,6335


