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Abstract. Vortex Particle Methods are one of the most convenient ways of tracking the
vorticity evolution. In the article we presented numerical recreation of the real life experiment
concerning head-on collision of two vortex rings. In the experiment the evolution and
reconnection of the vortex structures is tracked with passive markers (paint particles) which
in viscous fluid does not follow the evolution of vorticity field. In numerical computations
we showed the difference between vorticity evolution and movement of passive markers. The
agreement with the experiment was very good. Due to problems with very long time of
computations on a single processor the Vortex–in–Cell method was implemented on the
multicore architecture of the graphics cards (GPUs). Vortex Particle Methods are very well
suited for parallel computations. As there are myriads of particles in the flow and for each of
them the same equations of motion have to be solved the SIMD architecture used in GPUs seems
to be perfect. The main disadvantage in this case is the small amount of the RAM memory.
To overcome this problem we created a multiGPU implementation of the VIC method. Some
remarks on parallel computing are given in the article.

1. Introduction
Understanding the dynamics and mutual interaction of various types of vortical motions is the
key ingredient in clarifying and controlling fluid motions. One of the most fundamental 3D
vortical interactions is related to vortex tube reconnection. Reconnection is regarded as a one
fundamental mechanism that increases the complexity of the flow what is important in the study
of the turbulence phenomena [14].

In most of the real life experiments the vorticity evolution is tracked using some kind of
passive markers (like paint particles). But in viscous fluid the particles does not follow the
vorticity exactly [4]. In this situations the numerical simulation can be used.

As a numerical method we chose the 3D Vortex–in–Cell (VIC) method [1]. In this method
particles carry information about vorticity. It is well known that the velocity may be calculated
from the vorticity distribution. Next the vortex particles are displaced according to the local
velocity field. Particles intensities are then interpolated back to the grid nodes. To simulate the
effect of the viscosity the viscous splitting algorithm was used.

Numerical solution of the 3D Navier – Stokes equations for high Reynolds number, using
any method, is a very time consuming process. It may be noticed that recently there is not
much increase in the computational power of a single processor. We are forced to use multicore
architectures and parallel computation.
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The VIC method is very well suited for parallel computation. The displacement and
redistribution processes, which have to be done at each time step, have a local character and
the computations for each particle can be done independently. So the whole set of particles can
be divided into independent groups and operations over these groups can be done concurrently.

Graphics Processing Units (GPU) that were developed for video games provide cheap and
easily accessible hardware for scientific calculations. It is build of hundreds of simple streaming
processors which altogether give a great computational power. GPUs are relatively cheap and
commonly available but in order to take advantage of its potential one needs to use proper
numerical algorithms.

In the next chapter the equations of the motion and description of the vortex particle method
were be given. In chapter 3 we discussed problems connected to the parallel computations. In
chapter 4 we presented a numerical example of a head-on vortex rings collision. The last chapter
are conclusions.

2. Equations of the motion and description of the vortex particle method
Equations of incompressible and viscous fluid motion have the following form:

∂u⃗

∂t
+ (u⃗ · ∇)u⃗ = −1

ρ
∇p+ ν∆u⃗, (1)

∇ · u⃗ = 0. (2)

where u⃗ = (u, v, w) is velocity vector, ρ is fluid density, p is pressure, ν is kinematic viscosity.
Equation (1) can be transformed to the Helmholtz equation for vorticity evolution [18]:

∂ω⃗

∂t
+ (u⃗ · ∇)ω⃗ = (ω⃗ · ∇)u⃗+ ν∆ω⃗, (3)

where ω⃗ = ∇× u⃗.
Generally in all vortex particle methods the viscous splitting algorithm is used [3]. The

solution is obtained in two steps: first, the inviscid - Euler equation is solved.

∂ω⃗

∂t
+ (u⃗ · ∇)ω⃗ = (ω⃗ · ∇)u⃗. (4)

Next, the viscosity effect is simulated by solving the diffusion equation

∂ω⃗

∂t
= ν∆ω⃗, (5)

ω⃗(x⃗, 0) = ω⃗I , (6)

where ω⃗I is vorticity distribution obtained after inviscid step.
For the solution of the equations (5) and (6) one can use any suitable method like the Particle

Strength Exchange (PSE) method [1] or the Finite Difference method. In the present paper we
solved equations (5) and (6) using the implicit finite difference scheme.

In inviscid flow (4), according to the third Helmholtz theorem [18], vorticity lines move as
the material particles of fluids. Thus the movement of the vortex particles can be described by
the infinite set of ordinary differential equations:

dx⃗p
dt

= u⃗(x⃗p, t), x⃗(0, c⃗) = c⃗. (7)
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where c⃗ = (c1, c2, c3) means the Lagrange coordinates of fluid particles. Solution of the equation
(7) gives the particle-trajectory mapping Φ(·, t) : R3 → R3; c⃗ → Φ(c⃗, t) = x⃗ ∈ R3 that is
one–to–one and onto. Incompressibility implies that

det(∇cΦ(c⃗, t)) = 1. (8)

The velocity can be express through vorticity distribution using the Biot–Savart law

u⃗(x⃗, t) =

∫
K⃗(x⃗− x⃗′)ω⃗(x⃗′, t)dx⃗′ = (K⃗ ∗ ω⃗)(x⃗, t), (9)

where ∗ denotes convolution and K⃗ is a 3× 3 matrix kernel

K⃗(x⃗) =
1

4π

1

|x⃗|3

 0 x3 −x2
−x3 0 x1
x2 −x1 0

 , |x⃗| =
√

x21 + x22 + x23. (10)

Equations (9) are the fundamental formulas for direct vorticity methods [12]. By covering
the domain of the flow with a numerical mesh (Nx ×Ny ×Nz) with equidistant spacing h, the
i-th component of the intensity vector particle α⃗ is defined by the expression:

αi =

∫
Vp

ωi(x1, x2, x3)dx⃗ ≈ h3ωi(x⃗p), x⃗p ∈ Vp, |Vp| = h3, (11)

where Vp is the volume of the cell with index p. The velocity field is found by summing over all
of the particles

dx⃗p
dt

= u⃗(x⃗p, t) =
∑Np

k=1 K⃗(x⃗p − x⃗k)α⃗k(t), (12)

dα⃗p

dt
= (α⃗p(t) · ∇) u⃗(x⃗p, t). (13)

The disadvantage of the direct vortex particle method given by formula (12) is that the
method is very computational time consuming. It stems from the fact that one should take
into account all of the mutual interactions between particles that are in the flow. In practical
calculation one should also introduce regularization in the formulas (12) removing the singularity

of the kernel K⃗ [16, 13, 12]. To overcome those difficulties we replaced the Biot-Savart law for
velocity calculation with the grid method.

From incompressibility (2) stems the existence of the vector potential A⃗, such that:

u⃗ = ∇× A⃗. (14)

The vector potential A⃗ defines the velocity field with accuracy to some potential field ∇ϕ.
Adding A⃗ + ∇ϕ we do not change the the left side of (14). It is convenient to assume that

divA⃗ = 0. The vorticity is related to A⃗ as follows

∇×∇× A⃗ = ω⃗ = ∇(∇ · A⃗)−∆A⃗. (15)

So assuming that ∇ · A⃗ = 0 the vector potential can be obtained by solving three Poisson
equations

∆Ai = −ωi, i = 1, 2, 3. (16)
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The Poisson equation can be solved effectively using the numerical gird and finite difference
method. The velocity in grid nodes was obtained also by the finite difference using the formula
(14).

Solving equation (12) by Runge-Kutta method we need the velocity of the particles that are
out of the grid nodes. This is obtained using the interpolation of the velocity onto that new
particle positions. Using grid for solution of equations (12) and (16) significantly accelerates
(∼ 1000 times [2]) the calculations. For the solution of the algebraic systems obtained form
discretisation of the Poisson equations (16) we chose the Multigrid method that is very well
suited for parallelization. Multigrid method used in a sequential architecture can be as fast as the
Fast Poisson Solvers (FPS) [17]. The disadvantage of the FPS is that it is a sequential algorithm
and can not take the full advantage of the parallel architecture. Our parallel implementation
of the Multigrid method gave a speed-up up of 10-12 times comparing to FPS running on a
single thread of the processor [7]. The system of equations (12) was solved by the Runge–Kutta
method of the 4th order. After solution of the equations (12) obtained intensity of the particles
was redistributed onto the grid nodes.

We did the redistribution of the intensities of particles onto grid nodes in each time step,
before the solution of the Poisson equations (16).

It was done using an interpolation:

ωj =
∑
p

α̃pnφ

(
x⃗j − ˜⃗xp

h

)
h−3, (17)

where j is the index of the numerical mesh node, p is the index of a particle.
Let us assume that x ∈ R. In this article, we used the following interpolation kernel [1]

φ(x) =


(2− 5x2 + 3|x|3)/2 for 0 ≤ |x| ≤ 1,

(2− |x|)2(1− |x|)/2 for 1 ≤ |x| ≤ 2,

0 for 2 ≤ |x|.
(18)

For the 3D case, φ = φ(x)φ(y)φ(z).
If φ satisfies the following moment condition [1]:∑

j

(x− xj)
lφ

(
x− xj

h

)
= 0, 1 ≤ |l| ≤ m− 1, (19)

then
f(x) = O (hm) , (20)

and the redistribution process will be of the order m. It means that the polynomial functions
up to the order m will be exactly represented by this interpolation.

Kernel (18) used in this work is of order m = 3 [1].

3. Remarks on parallel computing on GPUs
As can be seen from the description of the VIC method, most calculations are related to the
vortex particles displacement and redistribution. These processes are independent of one another
and can therefore be done in parallel. For our calculations we selected Graphics Processing Units
(GPUs - also called as a device in [15]). The computer in which GPU is mounted is called as
a host. The graphics cards have a great computing power-to-cost ratio, but require quite a
different approach to programming.

Details of implementation of the VIC method on a single GPU can be found in the authors’
paper [7]. Rewriting the code to use the graphics card in calculations allowed for a speed-up of
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about 46 times. This result was obtained on a GTX480 GPU compared to a single thread of i7
960 @ 3.2GHz CPU.

Program running on a single GPU has its limitations. The most important is the amount of
the RAM memory available on a single device. In our vortex particle method implementation, a
single GPU used at that time (GTX480 with 1.5GB of RAM) allowed for a numerical mesh not
larger than 128x128x128 nodes. To overcome this limitation we had to write a program capable
of using multiple graphics cards. This required distribution and exchange of the data between
devices.

Our final implementation of the VIC method was supposed to run on the computer cluster
- that means a group of computers (called ,,nodes”) used as servers connected to each other
through local area network (LAN). Each of the nodes is a stand alone computer and can work
on its own. Our target hardware configuration was that each node has more than one GPU (in
supercomputing centres one can find nodes with even up to 8 GPUs).

To take advantage of the GPUDirect we introduced the so called hybrid MPI-OpenMP parallel
programming (also called multilevel parallel programming) in our code. OpenMP is a standard
for parallel programming on systems with shared-memory (in opposite to MPI which is dedicated
to systems with distributed memory). The main difference between these two standards is the
fact that in MPI each process makes its own copy of the data that it needs, and in OpenMP
processes may read or modify memory spaces created by other processes (variables can be set
as a shared or private). The main idea in hybrid MPI-OpenMP programming is that OpenMP
assures communication between the processes running on the same node and MPI transfers
the data between the nodes. OpenMP threads can use the GPUDirect for the communication
between GPUs on the same node.

4. Collision of two vortex rings (ReΓ = 1000)
This test shows the head–on collision of two vortex rings. The experimental results were
published by T.T. Lim and T.B. Nickels in [11] and also on the web side of Lim [10]
http://serve.me.nus.edu.sg/limtt/.

Distribution of vorticity in the cross section of the ring was assumed as:

ω(r) = ω0e
− r2

a2 (21)

where ω0 = 20 is the maximal value of vorticity in the tubes cross-section at initial time, a = 0.5
is a vortex tube radius. The radius of the ring was R = 1.0.

Based on this the total circulation Γ and the Reynolds number were calculated as

Γ =

∫ a

0
ω(r)2πr dr, ReΓ =

Γ

ν
(22)

where ν = 0.01 is kinematic viscosity coefficient. Calculated Reynolds number for this test was
ReΓ = 1000.

The results in the form of an isosurface plot can be seen in the figure 1 and the visualisation
with passive markers is presented in figure 2.

When two rings approach each other the velocities induced by them cause both rings to grow
in diameter and become flat. At first one can notice that the vorticity distributions around
the axis of symmetry create a thin sheet that was called by Lim as a membrane (frame t = 2
in figure 1). As was reported in [11] (see also movies obtained in experiments by Lim) when
size of the rings are approximately four times their initial diameter, a symmetrical instability
in the form of azimuthal waviness begin to developed (frame t = 3 in figure 1, see also [10]).
That instability lead to the creation, on the circumference, four bulges of vorticity. Our results
are related to the experimental data presented on the web side of Lim for Reynolds number
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Figure 1. Isosurface plot |ω| = 0.05ω0 (blue) and |ω| = 0.2ω0 (yellow - look like grey when
covered with blue) of collision of two vortex rings. ReΓ = 1000.

smaller then 1000. In Lim’s experimental results the number of the bulges is five times higher
than in our computations. It is hard to compare Lim’s results to our computations exactly. We
conducted computations on a finite size cube 20×20×20 with the periodic boundary conditions.
Lim related the Reynolds number to the diameter of the hole by which the rings were produced
and not to the circulation of the rings as we did. Smaller number of bulges on circumference
of vortex structure and rectangular shape of the structure in the end of our computation may
results from that. Also the size of our computational domain and periodic boundary conditions
impact on our results.

It is known that vorticity is not carried by the fluid particles in the viscous flow and that the

XXI Fluid Mechanics Conference IOP Publishing
Journal of Physics: Conference Series 530 (2014) 012021 doi:10.1088/1742-6596/530/1/012021

6



Figure 2. Collision of two vortex rings visualized by the passive marker. On the frame t = 0
the vortex rings are merged inside of the cuboids.

vorticity is not the prefect mean for visualization of the flow. Due to this, in order to better
compare our results to the real flow visualization we simulated movement of the passive markers
carried by the fluid. The vortex rings were merged in boxes of passive markers (colored with
the initial position: red - lower ring, blue - upper ring). The size of the cuboids was equal
to the diameter of the vortex rings and their thickness. Inside of each box we put a grid of
100× 100× 50 passive markers. It is clear that some passive markers laid outside of the rings.
Our numerical results were presents in figure 2. One can see that in frame t = 1 a tail created
by the particle initially placed outside of the rings is formed. In the frame t = 3 one can see
formation of the membrane. The structure that can be seen in the frame t = 5 very much
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resembles the experimental results by Lim presented in [10]. From the frame t = 8 it is clear
that reconnection did not take place. The particles did not mix. The reconnection phenomena
that would appear in the vorticity bulges could be responsible for the creation of the small rings
on a circumference as was reported in [11].

5. Closing remarks
We showed that our implementation of vortex particle method is capable of reproducing result
obtained in experiments. Because vorticity is not carried by the fluid particles in the viscous flow
numerical simulation seems to give better understanding of the processes behind the reconnection
phenomena. In this paper we showed comparison with the real experiment with the use of
isosurfaces of vorticity and passive markers.

Nowadays it is not difficult to notice that the computational power of a single processor
has stopped rising. Parallel architectures need to be used to deliver the means to speed up
computation. Developing programs on GPUs is an interesting alternative to using the CPU.
Thanks to hundreds of streaming processors working in parallel we can get the results faster.
The processors also quite cheap and easily accessible.

It is obvious that if one wants to have a good resolution of the physical phenomena, one has
to use a fine numerical mesh in computations. That requires greater memory and computational
time. To overcome this problems, one can use many graphics cards. Introducing of multi GPU
computation is our aim in the nearest future. Properly used GPUs (memory management,
parallel algorithms, etc.) allows programs to be executed much faster at relatively low cost.
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